http://pyx.sourceforge.net/

RX 0.4.1
User Manual

Jorg Lehmann <joergl@users.sourceforge.net>
André Wobst <wobsta@users.sourceforge.net>

September 23, 2003

http://pyx.sourceforge.net/
http://pyx.sourceforge.net/
<joergl@users.sourceforge.net>
mailto:joergl@users.sourceforge.net
<wobsta@users.sourceforge.net>
mailto:wobsta@users.sourceforge.net

PostScript is a trademark of Adobe Systems Incorporated.

Contents

1. Introduction

2. Module unit
2.1. Classlength o
2.2. Subclasses of length o
2.3. Conversion functions

3. Module path: PostScript like paths
3.1. Classpathel
3.2, Classpath
3.3. Classnormpath
3.4. Subclassesof path

4. Module trafo: linear transformations
4.1. Classtrafo. o e
4.2. Subclasses of trafo

5. Module canvas: PostScript interface
5.1, Class canvas i i e e e e e e e e e
5.1.1. Basicusage
5.1.2. Methods of the class canvas
5.2, Patterns
5.3. Subclasses of base.PathStyle 0.

6. Module text: TEX/BTEX interface
6.1. Basic functionality L
6.2. The texrunner e e

6.3. TEX/ETEX settings oo o o o o
6.4. Using the graphics-bundle with IXTEX o ...

6.5. TEX/ITEX message PArSers o v v v v v v v v i i e i i e e
6.6. The defaulttexrunner instance

7. Module box: convex box handling
7.1, polygono
7.2. functions working on a box list o000
7.3. rectangular boxes Lo s

10
10
11
12
13

14
14
15

16
16
16
17
19
19

20
20
20
22
23
24
24

8. Module connector 27

8.1. Classline 27
8.2 Class arc. o i e 27
8.3. Classcurve i e e e 27
8.4. Class twolines e 28

9. Module epsfile: EPS file inclusion 29
10. Module bbox 30
10.1. bbox constructor 30
10.2. bbox methods e 31
11.Module color 32
11.1. Color models e 32
11.2. Example0 oL 32
11.3. Color palettes e 33
12.Module data 34
12.1. Reading a table from a file.o, 34
12.2. Accessing columns 35
12.3. Mathematics on columns 35
12.4. Reading data from a sectioned config file 35
12.5. Own datafile readers 36
13.Module graph: graph plotting 37
13.1. Introductory notes Lo 37
13.2. AXes . . . o e e e 37
13.2.1. Axes properties e 38

13.2.2. Partitioning of axes Lo 38

13.2.3. Creating label text Lo 42

13.2.4. Painting of axeso L 44

13.2.5. Linked axes e 46

13.2.6. Special purpose axes i e e e e e e e 46

13.3. Data e 48
13.3.1. List of points L 48

13.3.2. Functions e 48

13.3.3. Parametric functionso 49
13.4.Styles . . . L o 49
13.4.1. Symbolso 49

13.4.2. Tines o o o e e e e e e 50

13.4.3. Rectangles 50

13.4.4. Texts o o o e e e e e e 51

13.4.5. ATTOWS . . o o o e e e 51

13.4.6. Bars L e e e e e e 51

14.

o 0w »

13.4.7. Iterateable style attributes
13.5. Keys . . o o o e
13.6. X-Y-Graph e

Module tex: TEX/WBTEX interface (obsolete)
14.1. Methods oL o
14.2. Attributes L e e e
14.3. Constructors L
14.4. Examples oL
14.4.1. Example 1. e e e
14.42. Example 2. oL e
14.5. Known bugs oL o
14.6. Future of the module tex,

Mathematical expressions
Named colors
Named palettes

Path styles and arrows in canvas module

55
55
26
o7
o8
o8
99
60
61

62
63
64

65

1. Introduction

PyX is a python package to create encapsulated PostScript figures. It provides classes
and methods to access basic PostScript functionality at an abstract level. At the same
time the emerging structures are very convenient to produce all kinds of drawings in a
non-interactive way. In combination with the python language itself the user can just
code any complexity of the figure wanted. Additionally an TEX/IATEX interface enables
one to use the famous high quality typesetting within the figures.

A major part of ByX on top of the already described basis is the provision of high level
functionality for complex tasks like 2d plots in publication-ready quality.

2. Module unit

With the unit module PyX makes available classes and functions for the specification
and manipulation of lengths. As usual, lengths consist of a number together with a mea-
surement unit, e.g. 1 cm, 50 points, 0.42inch. In addition, lengths in PyX are composed
of the four types “true”, “user”, “visual” and “width”, e.g. 1user cm, 50 true points,
(0.42 visual 4+ 0.2 width) inch. As their names indicate, they serve different purposes.
True lengths are not scalable and serve mainly for return values of PyX functions. The
other length types allow a rescaling by the user and differ with respect to the type of
object they are applied to:

user length: used for lengths of graphical objects like positions etc.

visual length: used for sizes of visual elements, like arrows, graph symbols, axis ticks,
etc.

width length: used for line widths

For instance, if you only want thicker lines for a publication version of your figure, you
can just rescale the width lengths. How this all works, is described in the following
sections.

2.1. Class length

The constructor of the 1ength class accepts as first argument either a number or a string;:

e length(number) means a user length in units of the default unit, defined via
unit.set(defaultunit=defaultunit).

e For length(string), the string has to consist of a maximum of three parts
separated by one or more whitespaces:
quantifier: integer/float value. Optional, defaults to 1.
type: "t" (true), "u" (user), "v" (visual), or "w" (width). Optional, defaults to
IIuII‘
unit: "m", "cm", "mm", "inch", or "pt". Optional, defaults to the default unit.
The default for the first argument is chosen in such a way that 5¥1length()==1ength(5).

Note that the default unit is initially set to "cm", but can be changed at any time by
the user. For instance, use

unit.set(defaultunit="inch")

if you want to specify per default every length in inches. Furthermore, the scaling of
the user, visual and width types can be changed with the set function, as well. To this
end, set accepts the named arguments uscale, vscale, and wscale. For example, if
you like to change the thickness of all lines (with predefined linewidths) by a factor of
two, just insert

unit.set(wscale = 2)

at the beginning of your program.
To complete the discussion of the length class, we mention, that as expected PyX lengths
can be added, subtracted, multiplied by a numerical factor and converted to a string.

2.2. Subclasses of length

A number of subclasses of length are already predefined. They only differ in their
defaults for type and unit. Note that again the default value for the quantifier is 1,
such that, for instance, 5*m(1)==m(5).

Subclass of length Type Unit Subclass of length Type Unit
m(x) user m vm(x) visual m
cm(x) user cm v_cm(x) visual cm

mm (x) user mm v_mm(x) visual mm
inch(x) user inch v_inch(x) visual inch
pt(x) user points | v_pt(x) visual points
t_m(x) true m w_m(x) width m
t_cm(x) true cm w_cm(x) width cm
t_mm(x) true mm w_mm (x) width mm
t_inch(x) true inch w_inch(x) width inch
t_pt(x) true points | w_pt(x) width points
um(x) user m

u_cm(x) user cm

u_mm(x) user mm

u_inch(x) user inch

u_pt(x) user points

Here, x is either a number or a string, which, as mentioned above, defaults to 1.

2.3. Conversion functions

If you want to know the value of a PyX length in certain units, you may use the predefined
conversion functions which are given in the following table

function result

tom(1) 1 in units of m
to_cm(1) 1 in units of cm
to_mm(1) 1 in units of mm
to_inch(1) 1 in units of inch
to_pt(1) 1 in units of points

If 1 is not yet a length instance, it is converted first into one, as described above. You
can also specify a tuple, if you want to convert multiple lengths at once.

3. Module path: PostScript like paths

With the help of the path module it is possible to construct PostScript like paths, which
are one of the main building blocks for the generation of drawings. To that end it
provides

e classes (derived from pathel) for the primitives moveto, lineto, etc.
e the class path (and derivatives thereof) representing an entire PostScript path

e the class normpath (and derivatives thereof) which is a path consisting only of a
certain subset of pathels, namely the four normpathels moveto, lineto, curveto
and closepath.

3.1. Class pathel

The class pathel is the superclass of all PostScript path construction primitives. It is
never used directly, but only by instantiating its subclasses, which correspond one by
one to the PostScript primitives.

Subclass of pathel

function

closepath()
moveto(x, y)
rmoveto(dx, dy)
lineto(x, y)

rlineto(dx, dy)

arc(x, y, r,
anglel, angle2)

arcn(x, y, T,
anglel, angle2)

arct(x1, y1, x2, y2, r)
rcurveto(dxl, dyl,

dx2, dy2,
dx3, dy3)

closes current subpath

sets current point to (x, y)

moves current point by (dx, dy)

moves current point to (x, y) while drawing a
straight line

moves current point by by (dx, dy) while drawing a
straight line

appends arc segment in counterclockwise direction
with center (x, y) and radius r from anglel to
angle2 (in degrees).

appends arc segment in clockwise direction with
center (x, y) and radius r from anglel to angle2 (in
degrees).

appends arc segment of radius r connecting between
(x1, y1) and (x2, y2).

appends a Bézier curve with the following four
control points: current point and the points defined
relative to the current point by (dx1, dy1), (dx2,
dy2), and (dx3, dy3)

10

Some notes on the above:
e All coordinates are in PyX lengths

e If the current point is defined before an arc or arcn command, a straight line from
current point to the beginning of the arc is prepended.

e The bounding box (see below) of Bézier curves is actually the box enclosing the
control points, 7.e. not neccesarily the smallest rectangle enclosing the Bézier curve.

3.2. Class path

The class path represents PostScript like paths in PyX. The path constructor allows
the creation of such a path out of a series of pathels. The following simple example
generates a triangle: looks like:

from pyx import *
from pyx.path import *

p = path(moveto(0, 0),
lineto(0, 1),
lineto(1, 1),
closepath())

In section 5, we shall see, how it is possible to output such a path on a canvas. For the
moment, we only want to discuss the methods provided by the path class. These range
from standard operations like the determination of the length of a path via len(p),
fetching of items using p[index] and the possibility to concatenate two paths, p1 + p2,
append further pathels using p.append(pathel) to more advanced methods, which are
summarized in the following table.

XXX terminology: subpath, ...

11

path method

function

_-init__(*pathels)
append (pathel)
arclength(epsilon=1e-5)

at(t)

lentopar(1,
epsilon=1e-5)

bbox ()

begin()

end ()

glue (opath)

intersect (opath,
epsilon=1e-5)

reversed()

split(t)

transformed(trafo)

Some notes on the above:

construct new path consisting of pathels

appends pathel to the end of path

returns the total arc length of all path segments in
PostScript points with accuracy epsilon.T

returns the coordinates of the point of path
corresponding to the parameter value t.

returns the parameter value corresponding to the
lengths 1 (one or a list of lengths). This uses
arclength-calculations with accuracy epsilon.t
returns the bounding box of the path

return first point of first subpath of path.f

return last point of last subpath of path.f

returns the path glued together with opath, i.e. the
last subpath of path and the first one of opath are
joined.t

returns tuple consisting of two lists of parameter
values corresponding to the intersection points of
path and opath, respectively.

returns the normalized reversed path.f

returns a tuple consisting of two normpaths
corresponding to the path split at the parameter
value t.f

returns the normalized and accordingly to the linear
transformation trafo transformed path. Here, trafo
must be an instance of the trafo.trafo class.’

e The bounding box may be too large, if the path contains any curveto elements,
since for these the control box, i.e., the bounding box enclosing the control points
of the Bézier curve is returned.

e The t denotes methods which require a prior conversion of the path into a normpath
instance. This is done automatically, but if you need to call such methods often,
it is a good idea to do the conversion once for performance reasons.

e Instead of using the glue method, you can also glue two paths together with help
of the << operator, for instance p = pl << p2.

3.3. Class normpath

The normpath class represents a specialized form of a path containing only the elements
moveto, lineto, curveto and closepath. Such normalized paths are used during all of
the more sophisticated path operations which are denoted by a { in the above table.

12

Any path can easily be converted to its normalized form by passing it as parameter to
the normpath constructor,

np = normpath(p)

Alternatively, by passing a series of pathels to the constructor, a normpath can be
constructed like a generic path. The sum of a normpath and a path always yields a
normpath.

3.4. Subclasses of path

For your convenience, some special PostScript paths are already defined, which are given
in the following table.

Subclass of path function

line(x1, y1, x2, y2) a line from the point (x1, y1) to the
point (x2, y2)

curve(x0, yO, x1, y1, x2, y2, x3, y3) a Bézier curve with control points
(x0, y0), ..., (x3, y3).

rect(x, y, w, h) a rectangle with the lower left point
(%, y), width w, and height h.

circle(x, y, r) a circle with center (x, y) and
radius r.

Note that besides the circle class all classes are actually subclasses of normpath.

13

4. Module trafo: linear transformations

With the trafo modulo ByX supports linear transformations, which can then be applied
to canvases, Bézier paths and other objects. It consists of the main class trafo rep-
resenting a general linear transformation and subclasses thereof, which provide special
operations like translation, rotation, scaling, and mirroring.

4.1. Class trafo

The trafo class represents a general linear transformation, which is defined for a vector
T as

P =AZ+b,
where A is the transformation matrix and b the translation vector. The transformation
matrix must not be singular, i.e. we require det A # 0.
Multiple trafo instances can be multiplied, corresponding to a consecutive application of
the respective transformation. Note that trafol*trafo2 means that trafol is applied
after trafo2, i.e. the new transformation is given by A = A1A; and b= Algg + 51. Use
the trafo methods described below, if you prefer thinking the other way round. The
inverse of a transformation can be obtained via the trafo method inverse(), defined
by the inverse A~! of the transformation matrix and the translation vector ~A-1p.
The methods of the trafo class are summarized in the following table.

trafo method function
__init__(matrix=((1,0),(0,1)), create new trafo instance with transformation
vector=(0,0)): matrix and vector.

apply(x, y) apply trafo to point vector (x,7y).

inverse () returns inverse transformation of trafo.

mirrored(angle) returns trafo followed by mirroring at line

through (0,0) with direction angle in degrees.
rotated(angle, returns trafo followed by rotation by angle
x=None, y=None) degrees around point (x,y), or (0,0), if not given.

scaled(sx, sy=None, returns trafo followed by scaling with scaling

x=None, y=None) factor sx in z-direction, sy in y-direction

(sy = sx, if not given) with scaling center (x,y),
or (0,0), if not given.

translated(x, y) returns trafo followed by translation by vector
(x,)-

slanted(a, angle=0, x=None, returns trafo followed by XXX

y=None)

14

4.2. Subclasses of trafo

The trafo module provides provides a number of subclasses of the trafo class, each of
which corresponds to one trafo method. They are listed in the following table:

trafo subclass function
mirror (angle) mirroring at line through (0,0) with direction angle
in degrees.
rotate(angle, rotation by angle degrees around point (x,y), or
x=None, y=None) (0,0), if not given.
scale(sx, sy=None, scaling with scaling factor sx in z-direction, sy in

x=None, y=None) y-direction (sy = sx, if not given) with scaling center
(x,v), or (0,0), if not given.
translate(x, y) translation by vector (x,y).
slant(a, angle=0, XXX
x=None, y=None)

15

5. Module canvas: PostScript interface

The central module for the PostScript access in PyX is named canvas. Besides pro-
viding the class canvas, which presents a collection of visual elements like paths, other
canvases, TEX or KTEX elements, it contains also various path styles (as subclasses of
base.PathStyle), path decorations like arrows (with the class canvas.PathDeco and
subclasses thereof), and the class canvas.clip which allows clipping of the output.

5.1. Class canvas

This is the basic class of the canvas module, which serves to collect various graphical
and text elements you want to write eventually to an (E)PS file.

5.1.1. Basic usage

Let us first demonstrate the basic usage of the canvas class. We start by constructing
the main canvas instance, which we shall by convention always name c.

from pyx import *

c = canvas.canvas()

Basic drawing then proceeds via the construction of a path, which can subsequently be
drawn on the canvas using the method stroke():

p = path.line(0, 0, 10, 10)
c.stroke(p)

or more concisely:
c.stroke(path.line(0, 0, 10, 10))

You can modify the appearance of a path by additionally passing instances of the class
PathStyle. For instance, you can draw the the above path p in blue:

c.stroke(p, color.rgb.blue)
Similarly, it is possible to draw a dashed version of p:
c.stroke(p, canvas.linestyle.dashed)

Combining of several PathStyles is of course also possible:

16

c.stroke(p, color.rgb.blue, canvas.linestyle.dashed)

Furthermore, drawing an arrow at the begin or end of the path is done in a similar way.
You just have to use the provided barrow and earrow instances:

c.stroke(p, canvas.barrow.normal, canvas.earrow.large)

Filling of a path is possible via the £i11 method of the canvas. Let us for example draw
a filled rectangle

r = path.rect(0, 0, 10, 5)
c.fill(r)

Alternatively, you can use the class filled of the canvas module in combination with
the stroke method:

c.stroke(r, canvas.filled())

To conclude the section on the drawing of paths, we consider a pretty sophisticated
combination of the above presented PathStyles:

c.stroke(p,
color.rgb.blue,
canvas.earrow.LARge(color.rgb.red,
canvas.stroked(canvas.linejoin.round),
canvas.filled(color.rgb.green)))

This draws the path in blue with a pretty large green arrow at the end, the outline of
which is red and rounded.

A canvas may also be embedded in another one using the insert method. This may
be useful when you want to apply a transformation on a whole set of operations. XXX:
Example

After you have finished the composition of the canvas, you can write it to a file using
the method writetofile(). It expects the required argument filename, the name of
the output file. To write your results to the file ”test.eps” just call it as follows:

c.writetofile("test")

5.1.2. Methods of the class canvas

The canvas class provides the following methods:

17

canvas method

function

_-init__(*args)

bbox ()

draw(path, *styles)

fill(path, *styles)

insert (PSOp, *args)

set (xstyles)

stroke(path, *styles)

text(x, y, text, *args)

texrunner (texrunner)

writetofile(filename,
paperformat=None,
rotated=0,
fittosize=0,
margin="1 t cm",
bbox=None,
bboxenlarge="1 t

pt")

Construct new canvas. args can be instances
of trafo.trafo, canvas.clip and/or
canvas.PathStyle.

Returns the bounding box enclosing all
elements of the canvas.

Generic drawing routine for given path on the
canvas (i.e. inserts it together with the
necessary newpath command, applying the
given styles. Styles can either be instances of
base.PathStyle or canvas.PathDeco (or
subclasses thereof).

Fills the given path on the canvas, i.e. inserts
it together with the necessary newpath, fill
sequence, applying the given styles. Styles
can either be instances of base.PathStyle or
canvas.PathDeco (or subclasses therof).
Inserts an instance of base.PS0Op into the
canvas. If args are present, create a new
canvasinstance passing args as arguments and
insert it. Returns PSOp.

Sets the given styles (instances of
base.PathStyle or subclasses) for the rest of
the canvas.

Strokes the given path on the canvas, i.e.
inserts it togeither with the necessary
newpath, stroke sequence, applying the given
styles. Styles can either be instances of
base.PathStyle or canvas.PathDeco (or
subclasses thereof).

Inserts text into the canvas (shortcut for
insert (texrunner.text(x, y, text,
*args))).

Sets the texrunner; default is
defaulttexrunner from the text module.
Writes the canvas to filename. Optionally, a
paperformat can be specified, in which case
the output will be centered with respect to the
corresponding size using the given margin. See
canvas. _paperformats for a list of known
paper formats . Use rotated, if you want to
center on a 90° rotated version of the
respective paper format. If fittosize is set,
the output is additionally scaled to the
maximal possible size. Normally, the bounding
box of the canvas is calculated automatically
from the bounding box of its elements.
Alternatively, you may specify the bbox
manually. In any case, the bounding box
becomes enlarged on all side by bboxenlarge.
This may be used to compensate for the
inability of ByX to take the linewidths into
account for the calculation of the bounding
box.

5.2. Patterns

The pattern class allows the definition of PostScript Tiling patterns (cf. Sect. 4.9 of
the PostScript Language Reference Manual) which may then be used to fill paths. The
classes pattern and canvas differ only in their constructor and in the absence of a
writetofile method in the former. The pattern constructor accepts the following
keyword arguments:

keyword description

painttype 1 (default) for coloured patterns or 2 for uncoloured patterns

tilingtype 1 (default) for constant spacing tilings (patterns are spaced constantly
by a multiple of a device pixel), 2 for undistored pattern cell, whereby
the spacing may vary by as much as one device pixel, or 3 for
constant spacing and faster tiling which behaves as tiling type 1 but
with additional distortion allowed to permit a more efficient
implementation.

xstep desired horizontal spacing between pattern cells, use None (default)
for automatic calculation from pattern bounding box.

ystep desired vertical spacing between pattern cells, use None (default) for
automatic calculation from pattern bounding box.

bbox bounding box of pattern. Use None for an automatical determination
of the bounding box (including an enlargement by 5 pts on each side.)

trafo additional transformation applied to pattern or None (default). This
may be used to rotate the pattern or to shift its phase (by a
translation).

After you have created a pattern instance, you define the pattern shape by drawing in it
like in an ordinary canvas. To use the pattern, you simply pass the pattern instance to
a stroke, fill, draw or set method of the canvas, just like you would to with a colour,
etc.

5.3. Subclasses of base.PathStyle

The canvas module provides a number of subclasses of the class base.PathStyle, which
allow to change the look of the paths drawn on the canvas. They are summarized in
Appendix D.

19

6. Module text: TgX/BTEX interface

6.1. Basic functionality

The text module seamlessly integrates the famous typesetting technique of TEX/IATEX
into ByX. The basic procedure is:

e start TEX/ITEX as soon as text creation is requested

e create boxes containing the requested text on the fly

e immediately analyse the TEX/KTEX output for errors etc.
e boxes are written into the dvi output

e box extents are immediately available (they are contained in the TEX/ITEX out-
put)

e as soon as PostScript needs to be written, stop TEX/IATEX, analyse the dvi output
and generate the requested PostScript

e use Typel fonts for the PostScript generation
Note that in order that Typel fonts can be used by PyX, an appropriate psfonts.map
containing entries for the used fonts has to be present in your texmf tree.

6.2. The texrunner

Instances of the class texrunner represent a TEX/IATEX instance. The keyword argu-
ments of the constructor are listed in the following table:

20

keyword

description

mode
1fs

docclass
docopt

usefiles!
waitfortex
texdebug
dvidebug
errordebug
dvicopy
pyxgraphics

texmessagestart!?

texmessagedocclassl’2

texmessagebegindocl’2

texmessageendl’2

texmessagedefaultpreamble

texmessagedef aultrun

"tex" (default) or "latex"

Specifies a latex font size file to be used with TEX
(not in IXTEX). Those files (with the suffix .1fs)
can be created by createlfs.tex. Possible
values are listed when a requested name could
not be found.

XTEX document class; default is "article"
specifies options for the document class; default is
None

access to TEX/IATEX jobname files; default: None;
example: ("spam.aux", "eggs.log")

wait this number of seconds for a TEX/KTEX
response; default 5

filename to store TEX/KTEX commands; default
None

dvi debug messages like dvitype (boolean);
default 0

verbose level of TEX/IATEX error messages; valid
values are 0, 1 (default), 2

get rid of virtual fonts which PyX cannot handle
(boolean); default 0

enables the usage of the graphics package without
further configuration (boolean); default 1

parsers for the TEX/IATEX start message; default:
texmessage.start

parsers for IATEXs \documentclass statement;
default: texmessage.load

parsers for IATEXs \begin{document} statement;
default: (texmessage.load,

texmessage .noaux)

parsers for TEXs \end/ I4¢TEXs \end{document}
statement; default: texmessage.texend

default parsers for preamble statements; default:
texmessage.load

default parsers for text statements; default:
(texmessage.loadfd,
texmessage.graphicsload)

I The parameter might contain None, a single entry or a sequence of entries.
2 TEX /ITREX message parsers are described in more detail below.

The texrunner instance provides several methods to be called by the user. First there
is a method called set. It takes the same kewword arguments as the constructor and its
purpose is to provide an access to the texrunner settings for a given instance. This is

21

valign.top

— wvalign.topbaseline

valign.middle —

— valign.middlebaseline

ﬁg—g S valign.bottombaseline
valign.bottom

Figure 6.1.: valign example

important for the defaulttextunner. The set method fails, when a modification can’t
be applied anymore (e.g. TEX/KTEX was already started).

The preamble method can be called before the text method only (see below). It takes
a TEX/IATEX expression and optionally one or several TEX/IXTEX message parsers. The
preamble expressions should be used to perform global settings, but should not create
any TEX/KTEX dvi output. In IATEX, the preamble expressions are inserted before
the \begin{document} statement. Note, that you can use \AtBeginDocument{...} to
postpone the direct evaluation.

Finally there is a text method. The first two parameters are the x and y position of
the output to be generated. The third parameter is a TEX/KTEX expression and further
parameters are attributes for this command. Those attributes might be TEX/IATEX
settings as described below, TEX/IATEX message parsers as described below as well, PyX
transformations, and B/X fill styles (like colors). The text method returns a box (see
chapter 7), which can be inserted into a canvas instance by its insert method to get
the text.

Note that for the generation of the PostScript code the TEX/IXTEX instance must be
terminated. However, a TEX/IATEX instance is started again when the text method is
called again. A call of the preamble method will still fail, but you can explicitly call the
reset method to allow for new preamble settings as well. The reset method takes a
boolean parameter reinit which can be set to run the old preamble settings.

6.3. TEX/BTEX settings

Horizontal alignment: halign.left (default), halign.center, halign.right,
halign(x) (x is a value between 0 and 1 standing for left and right, respectively)

Vertical box: Usually, TEX/IATEX expressions are handled in horizontal mode
(so-called LR-mode in TEX/ITEX; everything goes into a single line). You may
use parbox(x), where x is the width of the text, to switch to a multiline mode
(so-called vertical mode in TEX/IATEX).

22

Vertical alignment: valign.top, valign.middle, valign.bottom; when no parbox is
defined, additionally valign.baseline (default); when parbox is defined,
additionally valign.topbaseline (default), valign.middlebaseline, and
valign.bottombaseline; see figure 6.1 for an example

Vertical shift: vshift.char(lowerratio, heightstr="0") (lowers the output by
lowerratio of the height of heightstr), vshift.bottomzero=vshift.char(0)
(doesn’t have an effect), vshift.middlezero=vshift.char(0.5) (shifts down by
half of the height of a 0), vshift.topzero=vshift.char (1) (shifts down by the
height of the a 0), vshift.mathaxis (shifts down by the height of the
mathematical axis)

Mathmode: mathmode switches the mathmode of TEX/IATEX

Font size: size.tiny, size.scriptsize, size.footnotesize, size.small,
size.normalsize (default), size.large, size.Large, size.LARGE, size.huge,
size.Huge

6.4. Using the graphics-bundle with BTEX

The packages in IATEX-graphics bundle (color.sty, graphics.sty, graphicx.sty, ...) make
extensive use of \special commands. Here are some notes on this topic. Please install
the appropriate driver file pyx.def, which defines all the specials, in your IATEX-tree
and add the content of both files color.cfg and graphics.cfg to your personal con-
figuration files.! After you have installed the .cfg files please use the text module
always with the pyxgraphics keyword set to 0, this switches off a hack that might be
convenient for less experienced IXTEX-users.

You can then import the packages of the graphics-bundle and related packages (e.g. ro-
tating, ...) with the option pyx, e.g.

\usepackage [pyx] {color,graphicx}
Please note that the option pyx is only available with pyxgraphics=0 and a properly
installed driver file. Otherwise do not use this option, omit it completely or say [dvips].

When defining colours in KTEX as one of the colour models {gray, cmyk, rgb, RGB, hsb}
then pyx will use the corresponding values (one to four real numbers) for output. When
you use one of the named colors in I\TEX then pyx will use the corresponding predefined
colour (see module color and the colour table at the end of the manual).

When importing eps-graphics in IATEX then pyx will rotate, scale and clip your file like
you expect it. Note that pyx cannot import other graphics files than eps at the moment.

For reference purpose, the following specials can be handled by the text module at the
moment:

'If you do not know what I am talking about right now — just ignore this paragraph, but make sure
not to set the pyxgraphics keyword to 0.

23

PyX:color begin (model) (spec)
starts a colour. (model) is one of {gray, cmyk, rgb, hsb, texnamed}. (spec) de-
pends on the model: a name or some numbers.

PyX:color_end ends a colour.

PyX:epsinclude file= 1lx= 1lly= urx= ury= width= height= clip=0/1
includes an eps-file. The values of llx to ury are in the files’ coordinate system
and specify the part of the graphics that should become the specified width and
height in the outcome. The graphics may be clipped. The last three parameters
are optional.

PyX:scale begin (x) (y)
begins scaling from the current point.
PyX:scale_end ends scaling.
PyX:rotate_begin (angle) begins rotation around the current point.

PyX:rotate_end ends rotation.

6.5. TEX/BTEX message parsers

Message parsers are used to scan the output of TEX/KTEX. The output is analysed by a
sequence of message parsers. Each of them analyses the output and remove those parts
of the output, it feels responsible for. If there is nothing left in the end, the message got
validated, otherwise an exception is raised reporting the problem.

parser name purpose
texmessage.load loading of files (accept (file ...))
texmessage.loadfd loading of files (accept (file.fd))
texmessage.graphicsload loading of graphic files (accept <file.eps>)
texmessage.ignore accept everything as a valid output

More specialised message parsers should become available as required. Please feal free
to contribute (e.g. with ideas/problems; code is desired as well, of course). There are
further message parsers for PyXs internal use, but we skip them here as they are not
interesting from the users point of view.

6.6. The defaulttexrunner instance

The defaulttexrunner is an instance of the class texrunner, which is automatically
created by the text module. Additionally, the methods text, preamble, and set are
available as module functions accessing the defaulttexrunner. This single texrunner
instance is sufficient in most cases.

24

7. Module box: convex box handling

This module has a quite internal character, but might still be useful from the users
point of view. It might also get further enhanced to cover a broader range of standard
arranging problems.

In the context of this module a box is a convex polygon having optionally a center
coordinate, which plays an important role for the box alignment. The center might not
at all be central, but it should be within the box. The convexity is necessary in order
to keep the problems to be solved by this module quite a bit easier and unambiguous.
Directions (for the alignment etc.) are usually provided as pairs (dx, dy) within this
module. It is required, that at least one of these two numbers is unequal to zero. No
further assumptions are taken.

7.1. polygon

A polygon is the most general case of a box. It is an instance of the class polygon.
The constructor takes a list of points (which are (x, y) tuples) in the keyword argument
corners and optionally another (x, y) tuple as the keyword argument center. The
corners have to be ordered counterclockwise. In the following list some methods of this
polygon class are explained:

path(centerradius=None, bezierradius=None, beziersoftness=1): returns a
path of the box; the center might be marked by a small circle of radius
centerradius; the corners might be rounded using the parameters
bezierradius and beziersoftness

transform(*trafos): performs a list of transformations to the box

reltransform(*trafos): performs a list of transformations to the box relative to the
box center

circlealignvector(a, dx, dy): returns a vector (a tuple (x, y)) to align the box at
a circle with radius a in the direction (dx, dy); see figure 7.1

linealignvector(a, dx, dy): as above, but align at a line with distance a

circlealign(a, dx, dy): as circlealignvector, but perform the alignment instead of
returning the vector

linealign(a, dx, dy): as linealignvector, but perform the alignment instead of
returning the vector

25

~line align

circle, align

N
\
\
v
'
'

1

Figure 7.1.: circle and line alignment examples (equal direction and distance)

extent(dx, dy): extent of the box in the direction (dx, dy)

pointdistance(x, y): distance of the point (x, y) to the box; the point must be
outside of the box

boxdistance (other): distance of the box to the box other; when the boxes are
overlapping, BoxCrossError is raised

bbox(): returns a bounding box instance appropriate to the box

7.2. functions working on a box list

circlealignequal (boxes, a, dx, dy): Performs a circle alignment of the boxes
boxes using the parameters a, dx, and dy as in the circlealign method. For
the length of the alignment vector its largest value is taken for all cases.

linealignequal(boxes, a, dx, dy): as above, but performing a line alignment

tile(boxes, a, dx, dy): tiles the boxes boxes with a distance a between the boxes
(additional the maximal box extent in the given direction (dx, dy) is taken into
account)

7.3. rectangular boxes

For easier creation of rectangular boxes, the module provides the specialized class rect.
Its constructor first takes four parameters, namely the x, y position and the box width
and height. Additionally, for the definition of the position of the center, two keyword
arguments are available. The parameter relcenter takes a tuple containing a relative
X, y position of the center (they are relative to the box extent, thus values between 0
and 1 should be used). The parameter abscenter takes a tuple containing the x and y
position of the center. This values are measured with respect to the lower left corner of
the box. By default, the center of the rectangular box is set to this lower left corner.

26

8. Module connector

This module provides classes for connecting two box-instances with lines, arcs or curves.
All constructors of the following connector-classes take two box-instances as first ar-
guments. They return a normpath-instance from the first to the second box, start-
ing/ending at the boxes’ outline path. The behaviour of the path is determined by
the boxes’ center and some angle- and distance-keywords. The resulting path will addi-
tionally be shortened by lengths given in the boxdists-keyword (a list of two lengths,
default [0,0]).

8.1. Class line

The constructor of the 1line class accepts only boxes and the boxdists-keyword.

8.2. Class arc

The constructor also takes either the relangle-keyword or a combination of relbulge
and absbulge. The “bulge” is the greatest distance between the connecting arc and the
straight connecting line. (Default: relangle=45, relbulge=None, absbulge=None)

Note that the bulge- override the angle-keyword. When both relbulge and absbulge
are given they will be added.

8.3. Class curve

The construktor takes both angle- and bulge-keywords. Here, the bulges are used as
distances between bezier-curve control points:

absanglel or relanglel
absangle?2 or relangle2, where the absolute angle overrides the relative if both are
given. (Default: relanglel1=45, relangle2=45, absanglel=None, absangle2=None)

absbulge and relbulge, where they will be added if both are given.
(Default: absbulge=None relbulge=0.39; these default values produce similar output
like the defaults of the arc-class.)

Note that relative angle-keywords are counted in the following way: relanglel is
counted in negative direction, starting at the straight connector line, and relangle2
is counted in positive direction. Therefore, the outcome with two positive relative angles
will always leave the straight connector at its left and will not cross it.

27

8.4. Class twolines

This class returns two connected straight lines. There is a vast variety of combinations
for angle- and length-keywords. The user has to make sure to provide a non-ambiguous
set of keywords:

absanglel or relanglel for the first angle,

relangleM for the middle angle and

absangle?2 or relangle2 for the ending angle. Again, the absolute angle overrides the
relative if both are given. (Default: all five angles are None)

lengthl and length2 for the lengths of the connecting lines. (Default: None)

28

9. Module epsfile: EPS file inclusion

With help of the epsfile.epsfile class, you can easily embed another EPS file in your
canvas, thereby scaling, aligning the content at discretion. The most simple example

looks like

from pyx import *

cC =

canvas.canvas ()

c.insert(epsfile.epsfile(0, 0, "file.eps"))
c.writetofile("output")

All relevant parameters are passed to the epsfile.epsfile constructor.

They are

summarized in the following table:

argument name

description

X

y
filename

width=None
heigth=None
scale=None

align="bl"

clip=1
showbbox=0
translatebox=1

bbox=None

x-coordinate of position (measured in user units by default).
y-coordinate of position (measured in user units by default).
Name of the EPS file (including a possible extension).

Desired width of EPS graphics or None for original width.
Cannot be combined with scale specification.

Desired height of EPS graphics or None for original height.
Cannot be combined with scale specification.

Scaling factor for EPS graphics or None for no scaling. Cannot
be combined with width or height specification.

Alignment of EPS graphics. The first character specifies the
vertical alignment: b for bottom, c for center, and t for top. The
second character fixes the horizontal alignment: 1 for left, c for
center r for right.

Clip to bounding box of EPS file?

Stroke bounding box of EPS file?

Use lower left corner of bounding box of EPS file? Set to 0 with
care.

If given, use bbox instance instead of bounding box of EPS file.

29

10. Module bbox

The bbox module contains the definition of the bbox class representing bounding boxes
of graphical elements like paths, canvases, etc. used in PyX. Usually, you obtain bbox
instances as return values of the corresponding bbox()) method, but you may also
construct a bounding box by yourself.

10.1. bbox constructor

The bbox constructor accepts the following keyword arguments

keyword description

11x None (default) for —oco or z-position of the lower left corner of the bbox
(in user units)

11y None (default) for —oco or y-position of the lower left corner of the bbox
(in user units)

urx None (default) for co or z-position of the upper right corner of the bbox
(in user units)

ury None (default) for co or y-position of the upper right corner of the bbox
(in user units)

30

10.2. bbox methods

bbox method

function

intersects(other)

transformed(self, trafo)

enlarged(all=0, bottom=None,
left=None, top=None,
right=None)

path() or rect()

height ()

width()

top()

bottom()

left()

right ()

returns 1 if the bbox instance and other
intersect with each other.

returns self transformed by transformation
trafo.

return the bounding box enlarged by the given
amount (in visual units). all is the default for
all other directions, which is used whenever
Nomne is given for the corresponding direction.
return the path corresponding to the bounding
box rectangle.

returns the height of the bounding box (in PyX
lengths).

returns the width of the bounding box (in PyX
lengths).

returns the y-position of the top of the
bounding box (in ByX lengths).

returns the y-position of the bottom of the
bounding box (in ByX lengths).

returns the z-position of the left side of the
bounding box (in ByX lengths).

returns the z-position of the right side of the
bounding box (in ByX lengths).

Furthermore, two bounding boxes can be added (giving the bounding box enclosing
both) and multiplied (giving the intersection of both bounding boxes).

31

11. Module color

11.1. Color models

PostScript provides different color models. They are available to PyX by different color
classes, which just pass the colors down to the PostScript level. This implies, that
there are no conversion routines between different color models available. However,
some color model conversion routines are included in python’s standard library in the
module colorsym. Furthermore also the comparision of colors within a color model is
not supported, but might be added in future versions at least for checking color identity
and for ordering gray colors.

There is a class for each of the supported color models, namely gray, rgb, cmyk, and
hsb. The constructors take variables appropriate to the color model. Additionally, a list
of named colors is given in appendix B.

11.2. Example

from pyx import *
¢ = canvas.canvas()

.fill(path.rect(0, 0, 7, 3), color.gray(0.8))
.fill(path.rect(1, 1, 1, 1), color.rgb.red)

.fill(path.rect(3, 1, 1, 1), color.rgb.green)
.fill(path.rect(5, 1, 1, 1), color.rgb.blue)

o o0 o o0

c.writetofile("color")

The file color.eps is created and looks like:

32

11.3. Color palettes

The color module provides a class palette. The constructor of that class receives two
colors from the same color model and two named parameters min and max, which are
set to 0 and 1 by default. Between those colors a linear interpolation takes place by the
method getcolor depending on a value between min and max.

A list of named palettes is available in appendix C.

33

12. Module data

12.1. Reading a table from a file

The module datafile contains the class datafile which can be used to read in a table
from a file. You just have to construct an instance and provide a filename as the pa-
rameter, e.g. datafile("testdata"). The parsing of the file, namely the columns of
the table, is done by matching regular expressions. They can be modified, as they are
additional named arguments of the constructor. Furthermore there is the possibility to
skip some of the data points by some other keyword arguments as listed in the following
table:

argument name description

commentpattern start a comment line; default: re.compile(x" (#+|!+]%+)\s*")
stringpattern a string column; default: re.compile(r"\" (.*?)\" (\s+|$)
columnpattern any other column; default: re.compile(r" (.*?) (\s+|$)

skiphead skip first data lines; default: 0
skiptail skip last data lines; default: 0
every only take every every data line into account; default: 1

The processing of the input file is done by reading the file line by line and first strip
leading and tailing whitespaces of the line. Then a check is performed, whether the line
matches the comment pattern or not. If it does match, this rest of the line is analysed like
a table line when no data was read before (otherwise it is just thrown away). The result
is interpreted as column titles. As the titles are sequentially overwritten by another
comment line previous to the data, finally the last non-empty comment line determines
the column titles.

Thus we have still to explain, how the reading of data lines works. We create a list of
entries for each column out of a given line. A line resulting in an empty list (e.g. an
empty line) is just ignored. As shown in the table above, there is a special string column
pattern. When it matches it forces the interpretation of a column as a string. Otherwise
datafile will try to convert the columns automatically into floats except for the title
line. When the conversions fails, it just keeps the string.

The default string pattern allows for columns to contain whitespaces. It matches a
string whenever it starts with a quote (") and then tries to find the end of that very
string by another quote immediately followed by a whitespace or the end of the line.
Hence a quote within a string is just ignored and no kind of escaping is needed. The
only disadvantage is, that you cannot describe a string which contains a quote and a
whitespace consecutively. However, you can always replace this string pattern to fit your
special needs.

34

Finally the number of columns is fixed to the maximal number contained in the file and
lines with less entries get filled with None. Also the titles list is cutted to this maximal
number of columns.

12.2. Accessing columns

The method getcolumnno takes a parameter as the column description. If it matches
exactly one entry in the titles list, the number of this element is returned. Otherwise the
parameter should be an integer and it is checked, if this integer is a valid column index.
Like for other python indices a column number might be negative counting the columns
from the end. When an error occurres, the exception ColumnError is raised. Please
note, that the datafile inserts a first column having the index 0, which contains the line
number (starting at 1 and counting only data lines). Examples are getcolumnno(1) or
getcolumnno("title").

The method getcolumn takes the same argument as the method getcolumnno described
above, but it returns a list with the values of this very column.

12.3. Mathematics on columns

By the method addcolumn a new column is appended. The method takes a string as
the first parameter which is interpreted as an expression. When the expression contains
an equal sign (=), everything left to the last equal sign will become the title of the new
column. If no equal sign is found, the title will be set to None. The part right to the last
equal sign is interpreted as an mathematical expression. A list of functions, predefined
variables and operators can be found in appendix A. The list of available functions and
predefined variables can be extended by a dictionary passed as the keyword argument
context to the addcolumn method.

The expression might contain variable names. The interpretation of this names is done
in the following way:

e The names can be a column title, but this is only allowed for column titles which
are valid variable names (e.g. they should start with a letter or an underscore and
contain only letters, digits and the underscore).

e A variable name can start with the dollar symbol ($) and the following integer
number will directly refer to a column number.

The data referenced by variables in the expression need to be floats, otherwise the result
for that data line will be None.

12.4. Reading data from a sectioned config file

The class sectionfile provides a reader for files in the ConfigFile format (see the
description of the module ConfigFile from the pyx standard library).

35

12.5. Own datafile readers

The development of other datafile readers should be based on the class data by in-
heritance. When doing so, the methods getcolumnno, getcolumn, and addcolumn are
immediately available and the cooperation with other parts of PyX is assured. All what
has to be done, is a call to the inherited constructor supplying at least a sequence of
data points as the data keyword argument. A data point itself is a sequence of floats
and/or strings. Additionally a sequence of column titles (strings) might be given in the
titles argument.

36

13. Module graph: graph plotting

13.1. Introductory notes

The graph module is considered to be in constant, gradual development. For the moment
we concentrate ourself on standard 2d xy-graphs taking all kind of possible specialties
into account like any number of axes. Architectural decisions play the most substantial
role at the moment and have hopefully already been done that way, that their flexibility
will suffice for future usage in quite different graph applications, e.g. circular 2d graphs
or even 3d graphs. We will describe those parts of the graph module here, which are in
a totally usable state already and are hopefully not to be changed later on. However,
future developments certainly will cause some incompatibilities. At least be warned:
Nobody knows the hole list of things that will break. At the moment, keeping backwards
compatibility in the graph module is not at all an issue. Although we do not yet claim
any backwards compatibility for the future at all, the graph module is certainly one of
the biggest construction sites within PyX.

The task of drawing graphs is splitted in quite some subtasks, which are implemented
by classes of its own. We tried to make those components as independend as it is
usefull and possible in order to make them reuseable for different graph types. They are
also replaceable by the user to get more specialized graph drawing tasks done without
needing to implement a hole graph system. A major abstraction layer are the so-called
graph coordinates. Their range is generally fixed to [0;1]. Only the graph does know
about the conversion between these coordinates and the position at the canvas (the
graph itself is its canvas, that can be inserted into another canvas). By that, all other
components can be reused for different graph geometries. The interfaces between the
components are documented in docstrings of interface classes in the source. The interface
technique is used for documentation purposes only. For the user, the most important
informations (as described in the following) are the parameters of the constructors of the
various implementations of those interface. They are documented in docstrings of the
constructors of the classes. While effort of clearing and documenting is still in progress,
some parts are already nicely documented as you may see by using pydoc.

13.2. Axes

A common feature of a graph are axes. An axis is responsible for the conversion of values
to graph coordinates. There are predefined axis types, namely:

37

axis type description
linaxis linear axis
logaxis logarithmic axis

Further axes types are available to support axes splitting and bar graphs (other axes
types might be added in the future as well), but they behave quite different from the
generic case and are thus described separately below.

13.2.1. Axes properties

Global properties of an axis are set as named parameters in the axis constructor. Both,
the linaxis and the logaxis, have the same set of named parameters listed in the
following table:

argument name description

title axis title

min fixes axis minimum; if not set, it is automatically determined, but
this might fail, for example for the z-range of functions, when it is
not specified there

max as above, but for the maximum

reverse boolean; exchange minimum and maximum (might be used
without setting minimum and maximum); if min;max and reverse
is set, they cancel each other

divisor numerical divisor for the axis partitioning; default: 1

suffix a suffix to indicate the divisor within an automatic axis labeling

datavmin minimal graph coordinate when adjusting the axis minima to the
graph data; default: 0.05 (or 0, when min is present)

datavmax as above, but for the maximum; default: 0.95 (or 1, when max is
present)

tickvmin minimal graph coordinate for placing ticks to the axis; default: 0

tickvmax as above, but for the maximum; default: 1

density density parameter for the axis partition rating

maxworse number of trials with worse tick rating before giving up; default: 2

painter axis painter (described below)

texter texter for the axis labels (described below)

part axis partition (described below)

rater partition rater (described below)

13.2.2. Partitioning of axes

The definition of ticks and labels appropriate to an axis range is called partitioning. The
axis partioning within PyX uses rational arithmetics, which avoids any kind of rounding
problems to the cost of performance. The class frac supplies a rational number. It can
be initialized by another frac instance, a tuple of integers (called enumerator and denom-
inator), a float (which gets converted into a frac with a finite resolution floatprecision

38

of 10 digits per default) or a string with infinite precision (like ”71.2345e-100” or even
”1/3”). However, a partitioning is composed out of a sorted list of ticks, where the class
tick is derived from frac and has additional properties called ticklevel, labellevel,
label and labelattrs. When the ticklevel or the labellevel is None, it just means not
present, 0 means tick or label, respectively, 1 means subtick or sublevel and so on. When
labellevel is not None, a label might be explicitly given, which will get used as the
text of that label. Otherwise the axis painter has to create an appropriate text for the
label. The labelattrs might specify some attributes for the label to be used by the
text method of an texrunner instance.

You can pass a list of tick instance to the part argument of an axis. By that you can
place ticks whereever you want. (In former versions there was a manual partitioner and
the possibility of mixing partitions for that. This is still available in this version of PyX,
but it will be removed in the future.) Additionally you can use a partitioner to create
ticks appropriate to the axis range. This can be done by manually specifying distances
between ticks, subticks and so on. Alternatively there are automatic axis partitioners
available, which provide different partitions and the rating of those different partitions
by the rater become crutial. Note, that you can combine manually set ticks and a
partitioner in the part argument of an axis.

Partitioning of linear axes

The class linpart creates a linear partition as described by named parameters of the
constructor:

argument name default description

tickdist None distance between ticks, subticks, etc. (see comment
below); when the parameter is None, ticks will get placed
at labels

labeldist None distance between labels, sublabels, etc. (see comment

below); when the parameter is None, labels will get
placed at ticks

labels None set the text for the labels manually

extendtick 0 allow for a range extention to include the next tick of the
given level

extendlabel None as above, but for labels

epsilon 1le-10 allow for exceeding the range by that relative value

mix O an obsolete feature to mix-in additional ticks (to be

removed in future versions)

The ticks and labels can either be a list or just a single entry. When a list is provided,
the first entry stands for the tick or label, respectively, the second for the subtick or
sublabel, and so on. The entries are passed to the constructor of a frac instance, e.g.
there can be tuples (enumerator, denominator), strings, floats, etc.

39

Partitioning of logarithmic axes

The class logpart create a logarithmic partition. The parameters of the constructor of
the class logpart are quite simular to the parameters of linpart discussed above. In-
stead of the parameters tickdist and labeldist the parameters tickpos and labelpos
are present. All other parameters of logpart do not differ in comparision to linpart.
The tickdist and labeldist parameters take either a single preexp instance or a list
of preexp instances, where the first stands for the ticks (labels), the second for subticks
(sublabels) and so on. A preexp instance contains a list of pres, which are frac in-
stances defining some positions, say p;. Furthermore there is a frac instance called exp,
say e. Valid tick and label positions are then given by s"p;, where n is an integer.

name values it descibes

prelexpb 1 and multiple of 10°
prelexpd 1 and multiple of 10*
prelexp3 1 and multiple of 103
prelexp2 1 and multiple of 102

prelexp 1 and multiple of 10
prel25exp 1, 2, 5 and multiple of 10
prelto9exp 1,2, ..., 9 and multiple of 10

Automatic partitioning of linear axes

When no explicit axis partitioner is given in the constructor argument part of an linear
axis, it is initialized with an automatic partitioning scheme for linear axes. This scheme is
provided by the class autolinpart, where the constructor takes the following arguments:

argument name default description

variants defaultvariants list of possible values for the ticks parameter
of linpart (labels are placed at the position
of ticks)

extendtick 0 allow for a range extention to include the next
tick of the given level

epsilon 1le-10 allow for exceeding the range by that relative
value

mix O as in linpart

The default value for the argument variants, namely defaultvariants, is defined

as a class variable of autolinpart and has the value ((frac(1, 1), frac(1, 2)),
(frac(2, 1), frac(1, 1)), (frac(s, 2), frac(5, 4)), (frac(5, 1), frac(5, 2))).
This implies, that the automatic axis partitioning scheme allows for partitions using
(ticks, subticks) with at distances (1, 1/2), (2, 1), (5/2, 5/4), (5, 5/2). This list must be
sorted by the number of ticks the entries will lead to. The given fractions are automati-

cally multiplied or divided by 10 in order to fit better to the axis range. Therefore those
additional partitioning possibilities (infinte possibilities) must not be given explicitly.

40

Automatic partitioning of logarithmic axes

When no explicit axis partitioning is given in the constructor argument part of an
logarithmic axis, it is initialized with an automatic partitioning schemes for logarithmic
axes. This scheme is provided by the class autologpart, where the constructor takes
the following arguments:

argument name default description

variants defaultvariants list of pairs with possible values for the ticks
and labels parameters of logpart

extendtick 0 allow for a range extention to include the next
tick of the given level

extendlabel None as above, but for labels

epsilon 1le-10 allow for exceeding the range by that relative
value

mix O as in linpart

The default value for the argument variants, namely defaultvariants, is defined as
a class variable of autologpart and has the value:

(((prelexp, prelto9exp), # ticks & subticks,

(prelexp, prel25exp)), # labels & sublevels
((prelexp, prelto9exp), None), # ticks & subticks, labels=ticks
((prelexp2, prelexp), None), # ticks & subticks, labels=ticks
((prelexp3, prelexp), None), # ticks & subticks, labels=ticks
((prelexp4, prelexp), None), # ticks & subticks, labels=ticks
((prelexp5, prelexp), None)) # ticks & subticks, labels=ticks

As for the autolinaxis, this list must be sorted by the number of ticks the entries will
lead to.

Rating of axes partitionings

When an axis partitioning scheme returns several partitioning possibilities, the partitions
are rated by an instance of a rater class provided as the parameter rater at the axis
constructor. It is used to calculate a positive rating number for a given axis partitioning.
In the end, the lowest rated axis partitioning gets used.

The rating consists of two steps. The first takes into account only the number of ticks,
subticks, labels and so on in comparison to an optimal number. Additionally, the trans-
gression of the axis range by ticks and labels is taken into account. This rating leads
to a preselection of possible partitions. In the second step the layout of a partition gets
acknowledged by rating the distance of the labels to each other. Thereby partitions with
overlapping labels get quashed out.

The class axisrater implements a rating with quite some parameters specifically ad-
justed to linear and logarithmic axes. A detailed description of the hole system goes
beyond the scope of that manual. Take your freedom and have a look at the PyX source
code if you wish to adopt the rating to personal preferences.

41

The overall optimal partition properties, namely the density of ticks and labels, can be
easily adjusted by the single parameter density of the axis constructor. The rating is
adjusted to the default densitiy value of 1, but modifications of this parameter in the
range of 0.5 (for less ticks) to 2 or even 3 (for more ticks) might be usefull.

13.2.3. Creating label text

When a partition is created, the typical situation is that some of the ticks have a
labellevel not equal to None but there is no label (a string) defined to be printed at
this tick. The task of a texter is to create those label strings for a given list of ticks.
There are different texter classes creating different label strings.

Decimal numbers

The class decimaltexter creates decimal labels. The format of the labels can be con-
figured by numerous arguments of the constructor listed in the following table:

argument name default description

prefix e string to be inserted in front of the
number

infix e string to be inserted between the plus
or minus sign and the number

suffix e string to be inserted after the number

equalprecision 0 forces a common number of digits after
the comma

decimalsep " decimal separator

thousandsep e thousand separator

thousandthpartsep "" thousandth part separator

plus " plus sign

minus - minus sign

period r"\overline{’s}" format string to indicate a period

labelattrs text.mathmode a single attribute or a list of attributes

to be added to the labelattrs

Decimal numbers with an exponential

The class exponentialtexter creates decimal labels with an exponent. The format of
the labels can be configured by numerous arguments of the constructor listed in the
following table:

42

argument name

default

description

plus
minus
mantissaexp

nomantissaexp
minusnomantissaexp

mantissamin
mantissamax
skipmantissal
skipallmantissal
mantissatexter

r{{ts}\cdot 10" {ts}}"

r"{10\{%s}}"
e {-1\{%s}}"

frac((1, 1))
frac((10, 1))

0

1
decimaltexter()

plus sign for the exponent
minus sign for the exponent
format string for manissa and
exponent

format string when skipping a
manissa equals 1

format string when skipping a
manstissa equals -1

minimal value for the mantissa
maximal value for the mantissa
skip mantissa equals 1

skip mantissa when its always 1
texter for the mantissa

Decimal numbers without or with an exponential

The class defaulttexter creates decimal labels without or with an exponent. As the
name says, its used as the default texter. The texter splits the tick list into two lists,
one to be passed to a decimal texter and another to be passed to an exponential texter.
This splitting is based on the two properties smallestdecimal and biggestdecimal.
See the following table for all available arguments:

argument name

default

description

smallestdecimal

biggestdecimal
equaldecision
decimaltexter

exponentialtexter

Rational numbers

The class rationaltexter creates rational labels.

frac((1, 1000))

frac((9999, 1))
1

decimaltexter ()
exponentialtexter ()

the smallest number (ignoring the
sign) where the decimal texter
should be used

as above, but for the biggest number
either use the decimaltexter or the
exponentialtexter

texter withoud an exponential
exponential with an exponential

The format of the labels can be

configured by numerous arguments of the constructor listed in the following table:

43

argument name

default

description

prefix e string to be inserted in front of the rational

infix e string to be inserted between the plus or
minus sign and the rational

suffix n string to be inserted after the rational

enumprefix " as prefix but for the enumerator

enuminfix e as infix but for the enumerator

enumsuffix e as suffix but for the enumerator

denomprefix e as prefix but for the denominator

denominfix e as infix but for the denominator

denomsuffix e as suffix but for the denominator

plus " plus sign

minus n-n minus sign

minuspos 0 position of the minus: 0 — in front of the
fraction, 1 — in front of the enumerator, -1
— in front of the denominator

over r"{{¥%s}\over{%s}}" format string for the fraction

equaldenom 0 usually, the enumerator and the
denominator are canceled; if set, take the
least common multiple of all denominators

skip1l 1 skip printing the fraction for 1 when there
is a prefix, infix, or suffix

skipenum0 1 print 0 instead of a fraction when the
enumerator is 0

skipenuml 1 as skipl but for the enumerator

skipdenoml 1 skip the denominator when it is 1 and
there is no denomprefix, denominfix, or
denomsuffix

labelattrs text.mathmode a single attribute or a list of attributes to

13.2.4. Painting of axes

be added to the labelattrs

A major task for an axis is its painting. It is done by instances of axispainter, provided
to the constructor of an axis as its painter argument. The constructor of the axis
painter receives a numerous list of named parameters to modify the axis look. A list of
parameters is provided in the following table:

44

argument name description

innerticklengths™® tick length of inner ticks (visual length);

default: axispainter.defaultticklengths
outerticklengths'* as before, but for outer ticks; default: None
tickattrs?? stroke attributes for ticks; default: ()
gridattrs?? stroke attributes for grid lines; default: None
zerolineattrs®? stroke attributes for a grid line at axis value 0; default: ()
baselineattrs®? stroke attributes for the axis baseline;

default: canvas.linecap.square
labeldist label distance from axis (visual length); default: "0.3 cm"

labelattrs??

text attributes for labels;
default: (text.halign.center, text.vshift.mathaxis)

labeldirection® relative label direction (see below); default: None

labelhequalize set width of labels to its maximum (boolean); default: 0

labelvequalize set height and depth of labels to their maxima (boolean);
default: 1

titledist title distance from labels (visual length); default: "0.3 cm"

titleattrs®? text attributes for title; default: (text.halign.center,
text.vshift.mathaxis)

titledirection? relative title direction (see below);

default: paralleltext

titlepos title position in graph coordinates; default: 0.5

! The parameter should be a list, where the entries are attributes for the different levels.
When the level is larger then the list length, None is assumed. When the parameter is
not a list, it is applied to all levels.

2 The parameter should be a list of lists, where the entries are attributes for the dif-
ferent levels. When the level is larger then the list length, None is assumed. When the
parameter is not a list of lists, it is applied to all levels.

3 The parameter should be a list. When the parameter is not a list, the parameter is
interpreted as a list with a single entry.

4 The feature can be turned off by the value None. Within lists or lists of lists, the value
None might be used to turn off the feature for some levels selectively.

Relative directions for labels (labeldirection) and titles (titledirection) are in-
stances of rotatetext. By that the text direction is calculated relatively to the tick
direction of the axis and is added as an attribute of the text. The relative direction
provided by instances of the class rotatetext prevent upside down text by flipping it
by 180 degrees. For convenience, the two self-explanatory values rotatetext.parallel
and rotatetext.orthogonal are available, which are just instances of rotatetext ini-
tializes by -90 degree and 0, respectively.

45

13.2.5. Linked axes

Linked axes can be used whenever an axis should be repeated within a single graph or
even between different graphs although the intrinsic meaning is to have only one axis
plotted several times. Almost all properties of a linked axis are supplied by the axis it
is linked to (you may call it the base axis), but some properties and methods might be
different. For the typical case (implemented by linkaxis) only the painter of the axis is
exchanged together with some simplified behaviour when finishing the axis (there is no
need to recalculate the axis partition etc.). The constructor of 1inkaxis takes the axis to
be linked to as the first parameter and in the named parameter painter a new painter
for the axis. By default, linkaxispainter is used, which differs from the standard
axispainter by some default values for the arguments only. Namely, the arguments
zerolineattrs, labelattrs, and titleattrs are set to None turing off these features.

13.2.6. Special purpose axes

Splitable axes

Axes with breaks are created by instances of the class splitaxis. Its constructor takes
the following parameters:

argument name description

(axis list) a list of axes to be used as subaxes (this is the first parameter
of the constructor; it has no name)

splitlist a single number or a list split points of the possitions of the

axis breaks in graph coordinates; the value None forces
relsizesplitdist to be used; default: 0.5

splitdist gap of the axis break; default: 0.1

relsizesplitdist used when splitlist entries are None; gap of the axis break
in values of the surrounding axes (on logarithmic axes, a
decade corresponds to 1); the split position is adjusted to give
both surrounding axes the same scale (thus, their range must
be completely fixed); default: 1

title axis title

painter axis painter; default: splitaxispainter() (described below)

A split axis is build up from a list of “subaxes”. Those subaxes have to provide some
range information needed to identify the subaxis to be used out of a plain number (thus
all axes minima and maxima has to be set except for the two subaxes at the egde, where
for the first only the maximum is needed, while for the last only the minimum is needed).
The only point left is the description of the specialized splitaxispainter, where the
constructor takes the following parameters:

46

argument name description

breaklinesdist (visual) distance between the break lines; default: 0.05

breaklineslength (visual) length of break lines; default: 0.5

breaklinesangle angle of the breakline with respect to the axis; default: -60

breaklinesattrs stroke attributes for the break lines (None to turn off the break

lines, otherwise a single value or a tuple); default: ()

Additionally, the painter takes parameters for the axis title formatting like the standard
axis painter class axispainter. (There is a common base class titleaxispainter for
that.) The parameters are titledist, titleattrs, titledirection, and titlepos.

Bar axes

Axes appropriate for bar graphs are created by instances of the class baraxis. Its
constructor takes the following parameters:

argument name description

subaxis baraxis can be recursive by having another axis as its subaxis;
default: None

multisubaxis contains another baraxis instance to be used to construct a new
subaxes for each item (by that a nested bar axis with a different
number of subbars at each bar can be created) ; default: None

title axis title

dist distance between bars (relative to the bar width); default: 0.5

firstdist distance of the first bar to the border; default: 0.5*dist

lastdist as before but for the last bar

names tuple of name identifiers for bars; when set, no other identifiers are
allowed; default: None

texts dictionary translating names into label texts (otherwise just the
names are used); default: {}

painter axis painter; default: baraxispainter (described below)

In contrast to other axes, a bar axis uses name identifiers to calculate a position at the
axis. Usually, a style appropriate to a bar axis (this is right now just the bar style) set
those names out of the data it recieves. However, the names can be forced and fixed.
Bar axes can be recursive. Thus for a given value, an appropriate subaxis is choosen
(usually another bar axis). Usually only a single subaxis is needed, because it doesn’t
need to be painted and for each value the same recursive subaxis transformation has
to be applied. This is achieved by using the parameter subaxis. Alternatively you
may use the multisubaxis. Here only a bar axis can be used. Then the subaxes (note
axes instead of axis) are painted as well (however their painter can be set to not paint
anything). For that, duplications of the subaxis are created for each name. By that,
each subaxis can have different names, in particular different number of names.

The only point left is the description of the specialized baraxispainter. It works
quite similar to the axispainter. Thus the constructors have quite some param-
eters in common, namely titledist, titleattrs, titledirection, titlepos, and

47

baselineattrs. Furthermore the parameters innerticklength and outerticklength
work like their counterparts in the axispainter, but only plain values are allowed
there (no lists). However, they are both None by default and no ticks get plotted.
Then there is a hole bunch of name attribute identifiers, namely namedist, nameattrs,
namedirection, namehequalize, namevequalize which are identical to their counter-
parts called label... instead of name.... Last but not least, there is a parameter
namepos which is analogous to titlepos and set to 0.5 by default.

13.3. Data

13.3.1. List of points

Instances of the class data link together a datafile (or another instance of a class from
the module data) and a style (see below; default is symbol). The link object is needed
in order to be able to plot several data from a singe file without reading the file several
times. However, for easy usage, it is possible to provide just a filename instead of a
datafile instance as the first argument to the constructor of the class data thus hiding
the underlying datafile instance completely from view. This is the preferable solution
as long as the datafile gets used only once.

The additional parameters of the constructor of the class data are named parameters.
The values of those parameters describe data columns which are linked to the names of
the parameters within the style. The data columns can be identified directly via their
number or title, or by means of mathematical expression (as in the addcolumn method
of the class data in the module data; see chapter 12; indeed a addcolumn call takes
place to evaluate mathematical expressions once and for all).

The constructors keyword argument title however does not refer to a parameter of a
style, but instead sets the title to be used in an axis key.

13.3.2. Functions

The class function provides data generation out of a functional expression. The default
style for function plotting is 1ine. The constructor of function takes an expression as
the first parameter. The expression must be a string with exactly one equal sign (=). At
the left side the result axis identifier must be placed and at the right side the expression
must depend on exactly one variable axis identifier. Hence, a valid expression looks
like "y=sin(x)". You can access own variables and functions by providing them as a
dictionary to the constructors context keyword argument.

Additional named parameters of the constructor are:

48

argument name default description

min None minimal value for the variable
parameter; when None, the axis data
range will be used

max None as above, but for the maximum

points 100 number of points to be calculated

parser mathtree.parser() parser for the mathematical expression

context None dictionary of extern variables and
functions

title equal to the expression title to be used in the graph key

The expression evaluation takes place at a linear raster on the variable axis. More
advanced methods (detection of rapidely changing functions, handling of divergencies)
are likely to be added in future releases.

13.3.3. Parametric functions

The class paramfunction provides data generation out of a parametric representation of
a function. The default style for parametric function plotting is 1ine. The parameter list
of the constructor of paramfunction starts with three parameters describing the function
parameter. The first parameter is a string, namely the variable name. It is followed by a
minimal and maximal value to be used for that parameter. The next parameter contains
an expression assigning functions to the axis identifiers in a quite pythonic tuple notation.
As an example, such an expression could look like "x, y = sin(k), cos(3%k)".
Additionally, the named parameters points, parser, context, and title behave like
their equally named counterparts in function.

13.4. Styles

Styles are used to draw data at a graph. A style determines what is painted and how it is
painted. Due to this powerfull approach there are already some different styles available
and the possibility to introduce other styles opens even more prospects.

13.4.1. Symbols

The class symbol can be used to plot symbols, errorbars and lines configurable by param-
eters of the constructor. Providing None to attributes hides the according component.

49

argument name default description

symbol changesymbol.cross() symbol to be used (see below)

size "0.2 cm" size of the symbol (visual length)

symbolattrs canvas.stroked() draw attributes for the symbol

errorscale 0.5 size of the errorbar caps (relative to the
symbol size)

errorbarattrs () stroke attributes for the errorbars

lineattrs None stroke attributes for the line

The parameter symbol has to be a routine, which returns a path to be drawn (e.g.
stroked or filled). There are several such routines already available in the class symbol,
namely cross, plus, square, triangle, circle, and diamond. Furthermore, change-
able attributes might be used here (like the default value changesymbol.cross), see
section 13.4.7 for details.

The attributes are available as class variables after plotting the style for outside us-
age. Additionally, the variable path contains the path of the line (even when it wasn’t
plotted), which might be used to get crossing points, fill areas, etc.

Valid data names to be used when providing data to symbols are listed in the following
table. The character X stands for axis names like x, x2, y, etc.

data name description

X position of the symbol
Xmin minimum for the errorbar
Xmax maximum for the errorbar
dX relative size of the errorbar: Xmin, Xmax = X-dX, X+Xd
dXmin relative minimum Xmin = X-dXmin
dXmax relative maximum Xmax = X+dXmax
13.4.2. Lines

The class line is inherited from the class symbol and restricted itself to line drawing.
The constructor takes only the lineattrs keyword argment, which is by default set
to (changelinestyle(), canvas.linejoin.round). The other features of the symbol
style are turned off.

13.4.3. Rectangles

The class rect draws filled rectangles into a graph. The size and the position of the
rectangles to be plotted can be provided by the same data names like for the errorbars of
the class symbol. Indeed, the class symbol reuses most of the symbol code by inheritance,
while modifying the errorbar look into a colored filled rectangle and turing off the symbol
itself.

The color to be used for the filling of the rectangles is taken from a palette provided
to the constructor by the named parameter palette (default is color.palette.Gray).
The data name color is used to select the color out of this palette.

50

13.4.4. Texts

Another style to be used within graphs is the class text, which adds the output of text
to the class symbol. The text position relative to the symbol is defined by the two named
parameters textdx and textdy having a default of "0 cm" and "0.3 cm", respectively,
which are by default interpreted as visual length. A further named parameter textattrs
may contain a list of text attributes (or just a single attribute). The default for this
parameter is text.halign.center. Furthermore the constructor of this class allows all
other attributes of the class symbol.

13.4.5. Arrows

The class arrow can be used to plot small arrows into a graph where the size and direction
of the arrows has to be given within the data. The constructor of the class takes the
following parameters:

argument name default description

linelength "0.2 cm" length of a the arrow line (visual length)
arrowattrs O stroke attributes

arrowsize "0.1 cm" size of the arrow (visual length)

arrowdict {} attributes to be used in the earrow constructor
epsilon le-10 smallest allowed arrow size factor for a arrow to

become plotted (avoid numerical instabilities)

The arrow allows for data names like the symbol and introduces additionally the data
names size for the arrow size (as an multiplicator for the sizes provided to the construc-
tor) and angle for the arrow direction (in degree).

13.4.6. Bars

The class bar must be used in combination with an baraxis in order to create bar plots.
The constructor takes the following parameters:

argument name description

fromzero bars start at zero (boolean); default: 1

stacked stack bars (boolean/integer); for values bigger than 1 it is the
number of bars to be stacked; default: 0

skipmissing skip entries in the bar axis, when datapoints are missing; default:
1

xbar bars parallel to the graphs x-direction (boolean); default: 0

barattrs fill attributes; default: (canvas.stroked(color.gray.black),

changecolor.Rainbow())
Additionally, the bar style takes two data names appropriate to the graph (like x, x2,
and y).

o1

13.4.7. lterateable style attributes

The attributes provided to the constructors of styles can usually handle so called iter-
ateable attributes, which are changing itself when plotting several data sets. Iterateable
attributes can be easily written, but there are already some iterateable attributes avail-
able for the most common cases. For example a color change is done by instances of the
class colorchange, where the constructor takes a palette. Applying this attribute to a
style and using this style at a list of data, the color will get changed lineary along the
palette from one end to the other. The class colorchange includes inherited classes as
class variables, which are called like the color palettes shown in appendix C. For them
the default palette is set to the appropriate color palette.

Another attribute changer is called changesequence. The constructor takes a list of
attributes and the attribute changer cycles through this list whenever a new attribute is
requested. This attribute changer is used to implement the following attribute changers:

attribute changer description

changelinestyle iterates linestyles solid, dashed, dotted, dashdotted
changestrokedfilled iterates (canvas.stroked(), canvas.filled())
changefilledstroked iterates (canvas.filled(), canvas.stroked())

The class changesymbol can be used to cycle throu symbols and it provides already
various specialized classes as class variables. To loop over all available symbols (cross,
plus, square, triangle, circle, and diamond) the equal named class variables can be used.
They start at that symbol they are named of. Thus changesymbol.cross() cycles throu
the list starting at the cross symbol. Furthermore there are four class variables called
squaretwice, triangletwice, circletwice, and diamondtwice. They cycle throu the
four fillable symbols, but returning the symbols twice before they go on to the next
one. They are intented to be used in combination with changestrokedfilled and
changefilledstroked.

13.5. Keys

Graph keys can be created by instances of the class key. Its constructor takes the
following keyword arguments:

92

argument name

description

dist

(vertical) distance between the key entries (visual length); default:
"0.2 cm"

pos "tr" (top right; default), "br" (bottom right), "t1" (top left),
"bl" (bottom left)

hdist horizontal distance of the key (visual length); default: "0.6 cm"

vdist vertical distance of the key (visual length); default: "0.4 cm"

hinside align horizonally inside to the graph (boolean); default: 1

vinside align vertically inside to the graph (boolean); default: 1

symbolwidth width reserved for the symbol (visual length); default: "0.5 cm"

symbolheight height reserved for the symbol (visual length); default: "0.25 cm"

symbolspace distance between symbol and text (visual length); default: "0.2
cm"

textattrs text attributes (a list or a single entry); default:

text.vshift.mathaxis

The data description to be printed in the graph key is given by the title of the data
drawn.

13.6. X-Y-Graph

The class graphxy draws standard x-y-graphs. It is a subcanvas and can thus be just
inserted into a canvas. The x-axes are named x, x2, x3, ...and equally the y-axes. The
number of axes is not limited. All odd numbered axes are plotted at the bottom (for
x axes) and at the left (for y axes) and all even numbered axes are plotted opposite to
them. The lower numbers are closer to the graph.

The constructor of graphxy takes axes as named parameters where the parameter name
is an axis name as just described. Those parameters refer to an axis instance as they
where described in section 13.2. When no x or y is provided, they are automatically
set to instances of linaxis. When no x2 or y2 axes are given they are initialized as
standard linkaxis to the axis x and y. However, you can turn off the automatism by
setting those axes explicitly to None.

However, the constructor takes some more attributes listed in the following table:

93

argument name default description

Xpos "o" x position of the graph (user length)

ypos "o y position of the graph (user length)

width None width of the graph area (axes are outside of that
range)

height None as abovem, but for the height

ratio goldenrule width/height ratio when only a width or height is
provided

backgroundattrs None background attributes for the graph area

axisdist "0.8 cm" distance between axis (visual length)

key None key instance for an automatic graph key

After a graph is constructed, data can be plotted via the plot method. The first
argument should be an instance of the data providing classes described in section 13.3.
This first parameter can also be a list of those instances when you want to iterate
the style you explicitly provide as a second parameter to the plot method. The plot
method returns the plotinfo instance (or a list of plotinfo instances when a data list was
provided). The plotinfo class has attributes data and style, which provide access to
the plotted data and the style, respectively. Just as an example, from the style you can
access the path of the drawed line, fill areas with it etc.

After the plot method was called once or several times, you may explicitly call the
method finish. Most of the graphs functionallity becomes available just after (partially)
finishing the graph. A partial finish can even modify the order in which a graph performs
its drawing process. By default the five methods dolayout, dobackground, doaxis,
dodata, and dokey are called in that order. The method dolayout must always be
called first, but this is internally ensured once you call any of the routines yourself.
After dolayout gets called, the method plot can not be used anymore.

To get a position within a graph as a tuple out of some axes values, the method pos
can be used. It takes two values for a position at the x and y axis. By default, the
axes named x or y are used, but this is changed when the keyword arguments xaxis
and yaxis are set to other axes. The graph axes are available by their name using the
dictionary axes. Each axis has a method gridpath which is set by the graph. It returns
a path of a grid line for a given position at the axis.

To manually add a graph key, use the addkey method, which takes a key instance first
followed by several plotinfo instances.

o4

14. Module tex: TgX/BTEX interface
(obsolete)

Please note: THIS MODULE IS OBSOLETE. Consider the
text module instead.

14.1. Methods

Text in ByX is created by TEX or KTEX. From the technical point of view, the text
is inserted as an Encapsulated PostScript file (eps-file). This eps-file is generated by
the module tex which runs TEX or TEX followed by dvips to create the requested
text. TEX is used by instances of the class tex while INTEX is used by latex. Up to
the constructor and the advanced possibilities in ¥TEX commands both classes tex and
latex are identical. They provide 5 methods to the user listed in the following table:

method task allowed attributes in *attr

text(x, y, cmd, *attr) print cmd style, fontsize, halign, valign,
direction, color, msghandler(s)

define(cmd, *attr) execute cmd msghandler(s)

textwd(cmd, *attr) width of cmd style, fontsize, missextents,
msghandler (s)

textht (cmd, *attr) height of cmd style, fontsize, valign,
missextents, msghandler(s)

textdp(cmd, *attr) depth of cmd style, fontsize, valign,

missextents, msghandler(s)
There are some common rules:

e cnd stands for a TEX or IATEX expression. To prevent a backslash plague, python’s
raw string feature can nicely be used. x, y specify a position.

e define can only be called before any of the other methods. In I#TEX definitions
are inserted directly in front of the \begin{document} statement. However, this
is not a limitation, because by \AtBeginDocument{} definitions can be postponed.

e The extent routines textwd, textht, and textdp return true PyX length (see
section 2). Usually, the evaluation takes place when performing a write and the
results are stored in a file with the suffix .size. Therefore you have to run your
file twice at first to get the correct value. This default behaviour can be changed
by the missextents attribute.

95

e All commands are passed to TEX or ITEX in the calling order of the methods
with one exception: if the same command is used several times (for printing as
well as for calculating extents), all requests are executed at the position of the first
occurrence of the command.

e All text is inserted into the canvas at the position, where the tex- or latex-
instance itself is inserted into the canvas. In fact, the eps-file created by TEX or
KTEX and dvips is just inserted.

e The tailing *style parameter stands for a list of attribute parameters listed in the
last column of the table. Attribute parameters are instances of classes discussed
in detail in the following section.

e There can be several msghandler attributes which will be applied sequentially. All
other parameters can occure only once.

14.2. Attributes

style: style.text (default — does nothing to the command),
style.math (switches to math mode in \displaystyle)

fontsize: specifies the IXTEX font sizes by fontsize.xxx where xxx is one of tiny,
scriptsize, footnotesize, small, normalsize (default), large, Large, LARGE,
huge, or Huge.

halign: halign.left (default), halign.center, halign.right

valign: valign.top(length) or valign.bottom(length) — creates a vertical box
with width length. The vertical alignment is the baseline of the first line for
top and the last line for bottom. The box width is stored in the TEX dimension
\linewidth.

direction: direction.xxx where xxx stands for horizontal (default), vertical,
upsidedown, or rvertical. Additionally, any angle angle (in degree) is allowed
in direction(angle).

color: stands for any PyX color (see section 11), default is color.gray.black

missextents: provides a routine, which is called when a requested extent is not yet
available. In the following table a list of choises for this parameter is described:

o6

missextents description

missextents.returnzero returns zero (default)

missextents.returnzeroquiet as above, but does not return a warning via
atexit

missextents.raiseerror raise TexMissExtentError

missextents.createextent run TEX or INTEX immediately to get the

requested size

missextents.createallextent run TEX or KIEX immediately to get the
hight, width, and depth of the given text at
once

msghandler: provides a filter for TEX and ETEX messages and defines, which messages
are hidden. In the following table the predefined message handlers are described:

msghandler description
msghandler.showall shows all messages
msghandler.hideload Hides messages which are written when

loading packages and including other files.
They look like (file...) where file is a
readable file and ... stands for any text.
This message handler is the default handler.

msghandler.hidegraphicsload Hides messages which are written by
includegraphics of the graphicx package.
They look like <file> where file is a
readable file.

msghandler.hidefontwarning Hides IXTEX font warnings. They look like
LaTeX Font Warning: and are followed by
lines starting with (Font).

msghandler.hidebuterror Hides messages except those with a line
which starts with “! 7.
msghandler.hideall hides all messages

14.3. Constructors

Named parameters of the constructor are used to set global options for the instances of
the classes tex and latex. There are some common options for both classes listed in
the following table.

o7

parameter name default value description

defaultmsghandler msghandler.hideload default message handler (tuple
of message handlers is possible)

defaultmissextents missextents.returnzero default missing extent handler

texfilename None Filename used for running TEX
or ATEX. If None, a temporary
name is used and the files are
removed automatically. It can
be used to trace errors.

Additionally, the class tex has another option described in the following table.

parameter name default value description

lts "10pt" Specifies a latex font size file. Those files with the
suffix .1fs can be created by createlfs.tex.
Possible values are listed when a requested name
couldn’t be found.

Instead of the option listed in the table above, for the class latex the options described
in the following table are available (additionally to the common available options).

parameter name default value description

docclass "article" specifies the document class
docopt None specifies options to the document class
auxfilename None Specifies a filename for storing the IXTEX aux file.

This is needed when using labels and references.

14.4. Examples
14.4.1. Example 1

from pyx import *

¢ = canvas.canvas()
c.insert(tex.tex())

ct
I

t.text (0, 0, "Hello, world!")

print "width:", t.textwd("Hello, world!")
print "height:", t.textht("Hello, world!")
print "depth:", t.textdp("Hello, world!")

c.writetofile("tex1")

The output of this program is:

width: (0.019535 t + 0.000000 u + 0.000000 v + 0.000000 w) m

o8

height: (0.002441 t + 0.000000 u + 0.000000 v + 0.000000 w) m
depth: (0.000683 t + 0.000000 u + 0.000000 v + 0.000000 w) m

The file tex1.eps is created and looks like:

Hello, world!

14.4.2. Example 2

from pyx import *

O o0 o0 o0

ct

= canvas.canvas ()
c.insert (tex.tex())

.text (0, 0, "Hello, world!")
.text (0, -0.5, "Hello, world!", tex.fontsize.large)
.text (0, -1.5,

r"\sum_{n=1}"{\infty} {1\over{n~2}} = {{\pi~2}\over 6}",
tex.style.math)

.stroke(path.line(5, -0.5, 9, -0.5))
.stroke(path.line(5, -1, 9, -1))
.stroke(path.line(5, -1.5, 9, -1.5))
.stroke(path.line(7, -1.5, 7, 0))

.text(7, -0.5, "left aligned") # default is tex.halign.left
.text (7, -1, "center aligned", tex.halign.center)
.text(7, -1.5, "right aligned", tex.halign.right)

c.stroke(path.line(0, -4, 2, -4))
c.stroke(path.line(0, -2.5, 0, -5.5))
c.stroke(path.line(2, -2.5, 2, -5.5))

.text (0, -4,

"abcdefghijklmnopgqrstuvwxyz",
tex.valign.top(2))

c.stroke(path.line(2.5, -4, 4.5, -4))
c.stroke(path.line(2.5, -2.5, 2.5, -5.5))
c.stroke(path.line(4.5, -2.5, 4.5, -5.5))

.text (2.5, -4,

"abcdefghijklmnopgqrstuvwxyz",
tex.valign.bottom(2))

.stroke(path.line(5, -4, 9, -4))

99

c.stroke(path.line(7, -5.5, 7, -2.5))

.text (7, -4, "horizontal")

.text(7, -4, "vertical", tex.direction.vertical)
.text(7, -4, "rvertical", tex.direction.rvertical)
.text(7, -4, "upsidedown", tex.direction.upsidedown)

ct o o o

.text (7.5, -3.5, "45", tex.direction(45))

.text (6.5, -3.5, "135", tex.direction(135))
.text (6.5, -4.5, "225", tex.direction(225))
.text (7.5, -4.5, "315", tex.direction(315))

ct o o ot

t

.text (0, -6, "red", color.rgb.red)
.text(3, -6, "green", color.rgb.green)
t.text(6, -6, "blue", color.rgb.blue)

ct

c.writetofile ("tex2")

The file tex2.eps is created and looks like:
Hello, world!

Hello, world! left. aligned
o 9 center hligned
1 T . .
Z — = — right aligned
n? 6
n=1
abcdd
fghijklm
mopgqrst
abecde pvwxyz
fghijklm
mopgqrst
UvVwXxXyz

red

14.5. Known bugs

e The end of the last paragraph in a vertical box (valign.top and valign.bottom)
must be explictly written (by the command \par or an empty line) when a para-
graph formating parameter is changed locally (like the \baselineskip when chang-
ing the font size). Otherwise, the information is thrown away due to a closing of
the block before the paragraph formatting is performed.

e Due to dvips the bounding box is wrong for rotated text. The rotation is just
ignored in the bounding box calculation.

60

e Analysing TEX messages is a difficult subject and the message handlers pro-
vided with PyX are not at all perfect in that sense. For the message handlers
msghandler.hideload and msghandler.hidegraphicsload it is known, that they
do not correctly handle long filenames splited on several lines by TEX.

14.6. Future of the module tex

While we will certainly keep this module working at least for a while, it is likely that
another TEX interface will occure soon. The idea is to get rid of dvips and integrate
TEX more directly into PyX. The replacement module called text becomes available for
the first time in ByX 0.3.

61

A. Mathematical expressions

At several points within PyX mathematical expressions can be provided in form of string
parameters. They are evaluated by the module mathtree. This module is not described
futher in this user manual, because it is considered to be a technical detail. We just give
a list of available operators, functions and predefined variable names here here.

Operators: +; —; *; /; ** and ~ (both for power)

Functions: neg (negate); abs (absolute value); sgn (signum); sqrt (square root); exp;
log (natural logarithm); sin, cos, tan, asin, acos, atan (trigonometric functions
in radian units); sind, cosd, tand, asind, acosd, atand (as before but in degree
units); norm (va? + b? as an example for functions with multiple arguments)

predefined variables: pi (7); e (e)

62

B. Named colors

< I
X

< IS
<
< I

X X X X X

< IS

< I
~ I
~ I
~ I
~ I
~ I
~ I
~ I
~ I
~ I
~ I

grey.

grey.

black

white

rgb.red

rgb.green

rgb.blue

cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.

cmyk.

GreenYellow
Yellow
Goldenrod
Dandelion
Apricot
Peach
Melon
YellowOrange
Orange
BurntOrange
Bittersweet
RedOrange
Mahogany
Maroon
BrickRed
Red
OrangeRed

RubineRed

~ I
< I
~ I
~ I
~ I
~ I
~ I
~ I
~ I
X

~ I
~ I
~ I
< I
~ I
~ I
~ I
~ I
~ I
~ I
X

~ I
~ I
~ I
~ I

cmyk

cmyk.

cmyk.

cmyk

cmyk.

cmyk.

cmyk

cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.

cmyk.

cmyk

cmyk.
cmyk.

cmyk.

63

.WildStrawberry

Salmon

CarnationPink

.Magenta

VioletRed

Rhodamine

.Mulberry

RedViolet
Fuchsia
Lavender
Thistle
Orchid
DarkOrchid
Purple
Plum
Violet
RoyalPurple
BlueViolet
Periwinkle
CadetBlue

CornflowerBlue

.MidnightBlue

NavyBlue
RoyalBlue

Blue

X

><><><><><><><I
X

< IS
< IS
X

< IS
< IS
<

~ I
~ I
~ I
~ IS
< I
~ I
~ S

cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.
cmyk.

cmyk.

cmyk

Cerulean
Cyan
ProcessBlue
SkyBlue
Turquoise
TealBlue
Aquamarine
BlueGreen
Emerald
JungleGreen
SeaGreen
Green
ForestGreen
PineGreen
LimeGreen
YellowGreen
SpringGreen
OliveGreen
RawSienna
Sepia

Brown

Tan

Gray

Black

.White

Named palettes

64

palette.
palette.
palette.
palette.
palette.
palette.
palette.
palette.
palette.
palette.
palette.
palette.
palette.
palette.

palette.

palette

palette.
palette.

palette.

palette

palette.
palette.
palette.

palette.

Gray
ReverseGray
RedGreen
RedBlue
GreenRed
GreenBlue
BlueRed
BlueGreen
RedBlack
BlackRed
RedWhite
WhiteRed
GreenBlack
BlackGreen

GreenWhite

.WhiteGreen

BlueBlack

BlackBlue

BlueWhite

.WhiteBlue

Rainbow

ReverseRainbow

Hue

ReverseHue

D. Path styles and arrows in canvas module

linecap.butt (default) miterlimit.lessthan180deg

linecap.round miterlimit.lessthan90deg

miterlimit.lessthan4bdeg

linecap.square ¢¢¢§\§ miterlimit.lessthan60deg
linejoin.miter (default) ¢¢¢§\§ miterlimit.lessthanlideg (default)
linejoin.round

linejoin.bevel o Y dash((1, 1, 2, 2, 3, 3), 0)

RPN dash((1, 1, 2, 2, 3, 3), 1)

DD EDDY

linestyle.solid (default) MR dash((1, 2, 3), 2)
““"./ linestyle.dashed “"",/ dash((1, 2, 3), 3)
", linestyle.dotted o, dash((1, 2, 3), 4)
.l"'\. linestyle.dashdotted

earrow.SMall
linewidth.THIN earrow.Small
linewidth.THIn earrow.small
linewidth.THin earrow.normal
linewidth.Thin earrow.large
linewidth.thin earrow.Large
linewidth.normal (default) earrow.LArge

linewidth.thick

> BRI

linewidth.Thick barrow.normal
linewidth.THick
linewidth.THIck

linewidth.THICk

) DDDDDDDDDE

linewidth.THICK

	Introduction
	Module unit
	Class length
	Subclasses of length
	Conversion functions

	Module path: PostScript like paths
	Class pathel
	Class path
	Class normpath
	Subclasses of path

	Module trafo: linear transformations
	Class trafo
	Subclasses of trafo

	Module canvas: PostScript interface
	Class canvas
	Basic usage
	Methods of the class canvas

	Patterns
	Subclasses of base.PathStyle

	Module text: TeX/LaTeX interface
	Basic functionality
	The texrunner
	TeX/LaTeX settings
	Using the graphics-bundle with LaTeX
	TeX/LaTeX message parsers
	The defaulttexrunner instance

	Module box: convex box handling
	polygon
	functions working on a box list
	rectangular boxes

	Module connector
	Class line
	Class arc
	Class curve
	Class twolines

	Module epsfile: EPS file inclusion
	Module bbox
	bbox constructor
	bbox methods

	Module color
	Color models
	Example
	Color palettes

	Module data
	Reading a table from a file
	Accessing columns
	Mathematics on columns
	Reading data from a sectioned config file
	Own datafile readers

	Module graph: graph plotting
	Introductory notes
	Axes
	Axes properties
	Partitioning of axes
	Creating label text
	Painting of axes
	Linked axes
	Special purpose axes

	Data
	List of points
	Functions
	Parametric functions

	Styles
	Symbols
	Lines
	Rectangles
	Texts
	Arrows
	Bars
	Iterateable style attributes

	Keys
	X-Y-Graph

	Module tex: TeX/LaTeX interface (obsolete)
	Methods
	Attributes
	Constructors
	Examples
	Example 1
	Example 2

	Known bugs
	Future of the module tex

	Mathematical expressions
	Named colors
	Named palettes
	Path styles and arrows in canvas module

