Numarray
An Open Source project
Previous:
Legal Notice
Up:
Numarray An Open Source
Next:
1 Numerical Python
Contents
1 Numerical Python
1. Introduction
1.1 Where to get information and code
1.2 Acknowledgments
2. Installing numarray
2.1 Testing the Python installation
2.2 Testing the Numarray Python Extension Installation
2.3 Installing numarray
2.3.1 Installing on Unix, Linux, and Mac OSX
2.3.2 Installing on Windows
2.4 At the SourceForge...
3. High-Level Overview
3.1 Numarray Objects
3.2 Universal Functions
3.3 Convenience Functions
3.4 Differences between numarray and Numeric.
4. Array Basics
4.1 Basics
4.2 Creating arrays from scratch
4.2.1 array() and types
4.2.2 Multidimensional Arrays
4.3 Creating arrays with values specified ``on-the-fly''
4.3.1 Creating an array from a function
4.4 Coercion and Casting
4.4.1 Automatic Coercions and Binary Operations
4.4.2 The type value table
4.4.3 Long: the platform relative type
4.4.4 Deliberate casts (potentially down)
4.5 Operating on Arrays
4.5.1 Simple operations
4.5.2 In-place operations
4.6 Getting and Setting array values
4.7 Slicing Arrays
4.8 Index Arrays
4.9 Exception Handling
5. Ufuncs
5.1 What are Ufuncs?
5.1.1 Ufuncs can take output arguments
5.1.2 Ufuncs have special methods
5.1.3 Ufuncs always return new arrays
5.2 Which are the Ufuncs?
5.2.1 Unary Mathematical Ufuncs
5.2.2 Binary Mathematical Ufuncs
5.2.3 Logical and bitwise ufuncs
5.2.4 Comparisons
5.2.5 Ufunc shorthands
6. Pseudo Indices
7. Array Functions
8. Array Methods
9. Array Attributes
10. Character Array
10.1 Introduction
10.2 Character array stripping, padding, and truncation
10.3 Character array functions
10.4 Character array methods
11. Record Array
11.1 Introduction
11.2 Record array functions
11.3 Record array methods
11.4 Record object
12. C extension API
12.1 Accessing the numarray C-API
12.1.1 include numarray.h
12.1.2 import libnumarray
12.2 Fundamental data structures
12.2.1 Numarray Numerical Data Types
12.2.2 NumarrayType
12.2.3 PyArray_Descr
12.2.4 PyArrayObject
12.2.5 Flag Bits
12.3 High-level API
12.3.1 High-level functions
12.3.2 Behaved-ness Requirements
12.3.3 Example
12.4 Element-wise API
12.4.1 Element-wise functions
12.4.2 Example
12.5 One-dimensional API
12.6 Numeric emulation API
12.6.1 Emulation Functions
12.6.2 Numeric Compatible Functions
12.6.3 Unsupported Numeric Features
12.7 New numarray functions
2 Extension modules
13. Convolution
13.1 Convolution functions
13.2 Global constants
14. Fast-Fourier-Transform
14.1 Installation
14.1.1 Installation using FFTPACK
14.2 FFT Python Interface
14.3 fftpack Python Interface
15. Linear Algebra
15.1 Installation
15.1.1 Installation using LAPACK
15.2 Python Interface
16. Masked Arrays
16.1 What is a masked array?
16.2 Installing and using MA
16.3 Class MaskedArray
16.3.1 Attributes of masked arrays
16.3.2 Methods on masked arrays
16.3.3 Constructing masked arrays
16.3.4 What are masks?
16.3.5 Working with masks
16.3.6 Operations
16.3.7 Copying or not?
16.3.8 Behaviors
16.3.9 Indexing and Slicing
16.3.10 Indexing in assignments
16.3.11 Operations that produce a scalar result
16.3.12 Assignment to elements and slices
16.4 MaskedArray Attributes
16.5 MaskedArray Functions
16.5.1 Unary functions
16.5.2 Binary functions
16.5.3 Comparison operators
16.5.4 Logical operators
16.5.5 Special array operators
16.5.6 Controlling the size of the string representations
16.6 Helper classes
16.6.1 The constant masked
16.6.2 The constant masked_print_option
16.7 Examples of Using MA
16.7.1 Data with a given value representing missing data
16.7.2 Filling in the missing data
16.7.3 Numerical operations
16.7.4 Seeing the mask
16.7.5 Filling it your way
16.7.6 Ignoring extreme values
16.7.7 Averaging an entire multidimensional array
17. Random Numbers
17.1 General functions
17.2 Special random number distributions
17.2.1 Random floating point number distributions
17.2.2 Random integer number distributions
17.3 Examples
18. Multi-dimensional image processing
18.1 Introduction
18.2 Filter functions
18.2.1 Correlation and convolution
18.2.2 Smoothing filters
18.2.3 Filters based on order statistics
18.2.4 Derivatives
18.2.5 Fourier space filters
18.3 Interpolation functions
18.3.1 Spline pre-filters
18.3.2 Interpolation functions
18.4 Morphology
18.4.1 Binary morphology
18.4.2 Grey-scale morphology
18.5 Object measurements
A. Glossary
Index
Numarray
An Open Source project
Previous:
Legal Notice
Up:
Numarray An Open Source
Next:
1 Numerical Python
Release 0.9, documentation updated on March 12, 2004.
Send comments to the
NumArray community
.