00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028 #ifndef _chemistry_qc_basis_integral_h
00029 #define _chemistry_qc_basis_integral_h
00030
00031 #ifdef __GNUC__
00032 #pragma interface
00033 #endif
00034
00035 #include <stddef.h>
00036
00037 #include <util/state/state.h>
00038 #include <util/group/message.h>
00039 #include <chemistry/qc/basis/basis.h>
00040 #include <chemistry/qc/basis/obint.h>
00041 #include <chemistry/qc/basis/tbint.h>
00042
00043 namespace sc {
00044
00045 class SymmetryOperation;
00046 class RefSymmSCMatrix;
00047 class ShellRotation;
00048 class CartesianIter;
00049 class RedundantCartesianIter;
00050 class RedundantCartesianSubIter;
00051 class SphericalTransformIter;
00052 class SphericalTransform;
00053 class PointBag_double;
00054 class PetiteList;
00055
00058 class Integral : public SavableState {
00059 protected:
00062 Integral(const Ref<GaussianBasisSet> &b1,
00063 const Ref<GaussianBasisSet> &b2,
00064 const Ref<GaussianBasisSet> &b3,
00065 const Ref<GaussianBasisSet> &b4);
00066 Ref<GaussianBasisSet> bs1_;
00067 Ref<GaussianBasisSet> bs2_;
00068 Ref<GaussianBasisSet> bs3_;
00069 Ref<GaussianBasisSet> bs4_;
00070
00071
00072
00073 size_t storage_;
00074 size_t storage_used_;
00075
00076 Ref<MessageGrp> grp_;
00077 public:
00079 Integral(StateIn&);
00081 Integral(const Ref<KeyVal>&);
00082
00083 void save_data_state(StateOut&);
00084
00087 virtual int equiv(const Ref<Integral> &);
00088
00090 void set_storage(size_t i) { storage_=i; };
00092 size_t storage_used() { return storage_used_; }
00094 size_t storage_unused();
00095
00098 void adjust_storage(ptrdiff_t s) { storage_used_ += s; }
00099
00101 Ref<PetiteList> petite_list();
00103 Ref<PetiteList> petite_list(const Ref<GaussianBasisSet>&);
00106 ShellRotation shell_rotation(int am, SymmetryOperation&, int pure=0);
00107
00109 virtual void set_basis(const Ref<GaussianBasisSet> &b1,
00110 const Ref<GaussianBasisSet> &b2 = 0,
00111 const Ref<GaussianBasisSet> &b3 = 0,
00112 const Ref<GaussianBasisSet> &b4 = 0);
00113
00114
00115
00116
00119 virtual CartesianIter * new_cartesian_iter(int) =0;
00122 virtual RedundantCartesianIter * new_redundant_cartesian_iter(int) =0;
00125 virtual RedundantCartesianSubIter *
00126 new_redundant_cartesian_sub_iter(int) =0;
00129 virtual SphericalTransformIter *
00130 new_spherical_transform_iter(int l,
00131 int inv=0, int subl=-1) =0;
00134 virtual const SphericalTransform *
00135 spherical_transform(int l,
00136 int inv=0, int subl=-1) =0;
00137
00139 virtual Ref<OneBodyInt> overlap() =0;
00140
00142 virtual Ref<OneBodyInt> kinetic() =0;
00143
00146 virtual Ref<OneBodyInt> point_charge(const Ref<PointChargeData>&) =0;
00147
00150 virtual Ref<OneBodyInt> nuclear() = 0;
00151
00153 virtual Ref<OneBodyInt> hcore() = 0;
00154
00157 virtual Ref<OneBodyInt> efield_dot_vector(const Ref<EfieldDotVectorData>&) =0;
00158
00160 virtual Ref<OneBodyInt> dipole(const Ref<DipoleData>&) =0;
00161
00163 virtual Ref<OneBodyDerivInt> overlap_deriv() =0;
00164
00166 virtual Ref<OneBodyDerivInt> kinetic_deriv() =0;
00167
00169 virtual Ref<OneBodyDerivInt> nuclear_deriv() =0;
00170
00172 virtual Ref<OneBodyDerivInt> hcore_deriv() =0;
00173
00175 virtual Ref<TwoBodyInt> electron_repulsion() =0;
00176
00178 virtual Ref<TwoBodyDerivInt> electron_repulsion_deriv() =0;
00179
00181 Ref<MessageGrp> messagegrp() { return grp_; }
00182 };
00183
00184 }
00185
00186 #endif
00187
00188
00189
00190
00191