DejaGnu

The GNU Testing Framework

Rob Savoye

Free Software Foundation

DejaGnu: The GNU Testing Framework
by Rob Savoye

1.4.3 Edition
Copyright © 2002 Free Software Foundation, Inc.

Revision History

Revision 0.6.2 2002-7-16 Revised by: rob@welcomehome.org
Add new tutorial as a new chapter.

Revision 0.6.1 2001-2-16 Revised by: rob@welcomehome.org
Add info on the new dejagnu.h file.

Revision 0.6 2001-2-16 Revised by: rob@welcomehome.org
Updated for new release.

Revision 0.5 2000-1-24 Revised by: rob@welcomehome.org
Initial version after conversion to DocBook.

Table of Contents

Y 013 1 - Lo SR i
O YT 1 USRS 1
1.1, WRAL IS DEJAGNU ...ttt bbbt bbbt b e b ettt bne 1

1.2. What's NeW IN ThiS REIEASEcueiiieiee ettt ettt se e e e eneenas 1
2 N AN IS0 o] o o TP U PRSPPI 2

R TR B 1T (o o I € 0T SR UR USSR 2

1.4. A POSIX conforming test framMEWOLK...........ccccoiiiiiii et e 3

2. Getting DejaGNUu UP @NG FUNMING ...coviitirieieeeiererie sttt st seesee e esessesae et sbeee s e e eseebesbeseessenseseesesaesbesbensenseneasens 5
N =TS Yo TU T T 1 = 1= 1T PSR 5
2.0 L WINOOWS....eieie ettt bbb e et e ae e bt e b e b e b e e e seehe e bt s b se e b et et e Rt ebeebe s b e se e e eneenennas 6

2.1.2. Getting the source code for the calC eXample. ... 6

2.2. Create a minimal Project, €.0. CAIC.........ocveie ettt e st e see e eesreeneenes 6
2.2.1. A simple project without the GNU autotoQlS.........ccccceeviiiievericeeese e e 6

2.2.2. Using autoconf/autoheader/autOmake...........ccceveiereresesiesiereeeeese s e et seeeeneens 6

2.3. OUr first AULOMALEH ESESiiiiveieeieiete ettt ettt sttt et sttt 9
2.3.1. Running the test for the CalC EXamPIe........cco e e 9

2.3.2. The various config files or how to avoid Warnings........ccceeeeevererereerennseseseseese e seeneens 10

2.3.3. WHEN troUDIE SIIKES......c.i ittt s s 11

2.3.4. Testing “Hello WOrld™ I0CAIIY..........oo i e 12

p N (] £ (=T 0 T0] (= (= OSSR 12
2.4.1. Setup telNet t0 YOUI OWN NOSL.......cciiiiiiee e e 12

2.4.2. Atest case for [0gin Via tEINEL.......ccoiiiiie e 13

2.4.3. Remote testing “Hello WOIIUY.........ccooiireee e e 14

2.4.4. Transferring files from/to the target..........oei e 15

2.4.5. Preparing for CroSSCOMPIlALION.cciiuiirieireeeretere e s 16

2.4.6. ReMOLE tESING OF CAIC.......cciiirieiitee et 17

2.4.7. Using WindowsNT as host and VXWOrKS @s targel.........cccoeireerrennennenesee e 17

3. RUNNING TESES ...ttt ettt h bbb bt E st E b £ b b £ Rt b b e b et b et b et e b et b bbb e b e b 18
TR I 1Y = 1 o] =T oSS 18

T {001 =T] ST U TSP PR 18
T R O 11 11 010 | B K= L == TSRO PROSRPPPRUPT 18

3.2.2. INVOKING RUNTESE. ...ttt ettt b b e e et e et ebe b e b e e ne 19

3.2.3. COMMON OPLIONS... ittt ittt sttt et b b e e e et sbe s b et e se et eaeeb e s bese e s e s e se e st eaesbesbesee e ens 23

TG T I g 1ol (1 (=TS =T T= T U o] o To [o =SSP 23
G0 Tt W] 1 = LY 1= 24

G T T2 o T N 1 = 24

G0 TG T T o 10 T I o To T i 1= 25

R @A) (] 441 o [D= = 1] o1 TSRS 28
g O I Yo | @ o 1= S 28

o € [o] o Y= 1 O] T [N 1= S 29

I T = To T Vo [@] o T 1= S 31
=Y o g o (=N o Lo R A =TS 1] o S 32

4.5, CONIQ FIlE VAIUES. ..ottt sttt b e sttt se et ne bt sbe e 34
4.5.1. Command Line Option VariabIes..........ccoeiiiiiiiieeereeree et 34

4.5.2. Personal Config File.........ccuiiriiiiee ettt st st 35

5. EXIENAING DEJAGNU.eueitiuieiieeeieriei ettt bbb bbbt b et b et b et s bbbt b s be et 36

5.1. ADAING A NEW TESE SUILE.... ..ttt ettt b et b et bbbt e bt 36
5.2, AAAING A NEW TOOL.....ecuiiiiiiieieieete sttt ettt bttt st e bt e b et b et b et bt b ae et e b 36
5.3, AAAING A NEW TAIGEL ..ottt sttt sttt st b et bt e st s e e b s e b e se b et s b et b e st s b e st st enesnebe e b 39
5.4, ADdING A NEW BOAITU........ciiieiiitireert ettt b et b et et b et e bt 40
5.5. Board Config File VAIUES..........co ettt ettt st se e a e e e e e 41
N I Y 111 To AN LTS =TT USRS 43
ST B =T 010 To To [T AN KT A O = T USSP 44
5.8. Adding A TeSt CaSe TO A TS SUILE......cueiiiiieeerere ettt st b e sae e 45
5.9. HINS ON WILING A TESE CaSE .. uitiieieeietirie ettt sttt st ae bt et et ebe b e b e e e et ebesbesaesee e eneenes 45
5.10. Special variables USed DY tESt CASES.......ccuriiiiriie ettt e b e e e 46
B. UNIE TESTING....eveteeetireet ittt R R e bRt Rt E et Rt n e n e r s 48
R VAV o o a0 Ty =TS 1 T PRSI 48
6.2. The dejagnu.n HEAEN FlB..........ccviiiiiiere e 48
A R L] (=101 0o SRS 49
4 R © o] =1 a1 T T 0T =T U ST 49
A 1= o T o S TSS 49
7 R o a1 To [0 T TaTo I LY =TT o1 S 49
7.2.2. INSEAIING DEJAGNL......c ettt sttt sttt st st st b ettt b et b st e b et e b 49

A T =W T o o To =T L1] YOS 50
R T R o] £ (o1 (Y g oI o Yo =T [= S 50
7.3.2. Procedures For Remote COMMUNICALION.cooiiririenineieree s 62
7.3.3. Procedures For Using ULilities t0 CONNECL..........coiiiiieireiee e 76
7.3.4. Procedures FOr Target BOAIDS..........coveiriiiicerrieesie ettt s 84
7.3.5. Target Database PrOCEUULES. ..ottt s 87
7.3.6. Platform Dependant PrOCEUULES.........coci ittt sttt s s 92
7.3.7. ULIlILY PrOCEAUIES......c.o ittt bbbt en 93
7.3.8. LIDGIOSS, A FIEE BSP ...ttt bbb e 98
7.3.9. Procedures for debugging YOUr TCl COOE........ccoiiiiiininieiiee et 104

A T o TSSO 107
8. UNIE TESHING AP .. ettt et h b bt e e £ et e e e Rt e bt eb e b e s e e e et eheeb e e bt se et e s e s eneebenbenbeses 109
8.1, C UNIE TESHNG APL.....oeiiect ettt bbbt bbbt st b bbbttt st b s 109
8.1.1. PASS FUNCHON.......ciiiiiiiieie ittt ettt st r et e nn e 109
8.1.2. Fall FUNCHION......ccuiiiieiiiecte sttt ettt n s 109
8.1.3. UNLESIE FUNCHIOMN.......ciiitiiicieeetee sttt ettt 109
8.1.4. UNIresoIVed FUNCHIONL ..ottt 109
8.1.5. TOAIS FUNCHION......c.ciieiireeiireetee ettt ettt 109

o T O U 1o T =21 T 2 . S S 110
8.2.1. PASS MELNOM......c.iiriieieiie s 110
8.2.2. Fal MEINOM. ... e 110
8.2.3. UNteSted MELNOM.........ciiriecrccc et 110
8.2.4. UNresolved MEthOd. ... 110
8.2.5. TOLAIS MELNOM. ...t 111

List of Tables

4-1. Tcl Variables For Command LiNE OPLIANS.........ccuieirieiiirereiesesie ettt s 34
5-1. CommON BOArd INfO FIEIAS........eoeieeie ettt ettt et e e st e s st e e e et e s e saa e e s sabeesastessbeessbeesssnessanes 41
5-2. Board INfo FIeldS FOr GTC & GDB........o ittt ettt e ettt e st e e et e s e s e e e s satessastessbeesssbeesssnessanes 42

List of Examples

2-1. Runtest output iN @ €MPLY AIFECIANY......cciiceeieieeie st ree st e st e sre s et e st e e s e ssesaeessesaeetesreeneanes 5
2-2. Sample output of automake With MiSSING fIlES........ccceii e e 7
2-3. Sample OULPUL Of CONTIGUEE.........coieiieeee ettt e re s et e st e e e e te e e e seesneeeesreeneanes 8
2-4. Sample outpUL DUIIAING CAIC.........coi it e re s e e st e e e e teereessesneentesrennennes 8
2-5. Creating the calc program using the GNU autotOQLS..........ccceveveiiiiiicscs e eneas 8
2-6. Sample output GENETALING @ SILE.EXI. . cuciieire i sirereree e e et e et e e e e se et e s beseesseneeseesessesrenteeeneenennens 9
2-7. Sample output of runtest in a configured dir€CIANY.........coviv i iereecre e e eeneas 9
2-8. Sample output of runtest with the usual configuration filS..........ccccecvveririererccce e 11
2-9. Displaying details about runtest EXECULIAN..........ccccruereeiieieere et neens 12
P2 KO A 153 B (o To= 1) B =S = T = 12
2-11. Sample log of a telnet 10gin t0 I0CAINASL..........ccooiiiee e 13
2-12. Defining a remote target DOAIM. ..o 13
2-13. DejaGnu script for [0gging in into @& remMOte tAIgEL.........ccveirieiirieiree e 14
2-14. Afirst (local) remote "Hello WOTIA" TESL.......cooiiiiieere e 14
2-15. Board definition fOr @ reMOLE TAIGEL........coi i bbb 15
2-16. Test script to transfer a file to & reMOLE TALGEL.........cviiiree e 15
2-17. Defining a board to use FTP as file tranSPOLL.........ccoiiiireree e 15
2-18. Using autotools fOr CroSS deVEIOPIMENL........cciiiiirieirierte ettt bbb 16
3-1. Here is @ short Sample SUMMAIY.LQQ. ..o bbb 24
3-2. Here is a brief example showing a detailed 10g fOr G++ tESES.......cciiiriirreee e 25
3-3. The log messages begin with a message of the fQrmL...........ccoeoiiii e 26
3-4. Here is an excerpt from the debugging [0g fOr @ GDB tESL:......cc.coriiiiireree e 26
4-1. The firSt SECHON STAMS WILKL.....ccueiuiii e bbb e s b e bt et ae b e s beseeseeeeneas 28
4-2. The first section ends With thiS I@..........cccoi i s e 29
e Mo Tor= 1 o] o1 T [N i = USROS PRPT 29
e €] le] oF= | I @ o1 oo i {1 [T USRS PP 30
I = To =0 J o] o1 T N] (=N USSR URPRPTO 31
R T =T 10 (= [0 1S3 A=Y= (1o S 32
v/ o (o B N g T3 = To = 1o N 1= Tor (o] Y 33
4-8. Setup CroSS REMOLE TSNcic ettt et et e et s e e s e te st e e se et e ereeaesreeneeseesseensenseennenes 33
4-9. Setup Native REMOLE TESHNG......ccceii ettt st te e e e e e e aeeaesaeeeeseesseensesreennenes 33
O T 0 T T =] A =1 T (= 2P 33
O o 0TI W =TS A =T 0T (=Y SRS 33
4-12. PersoNal CONfig File.....ci ettt st s e e e e e s sesae st e te e e e eseetesteseeneeneenens 35
5-1. Sample MaKefile.in FragMEeNL. ... st st se e st se et teseesee s eneesessesaesteneeneennens 37
5-2. Simple Batch Program TOOI NIt FilE.........ciiiie ettt s ens 38
5-3. Simple Interactive Program TOOI INit File.........ccccveieieeieeise sttt s 38
S LS 1] o AN V=2 VA Yo | I o oo 39
5-5. EXAMPIE TSt CASE RLIL.....cuiuiiiiiieiirieiiriete ettt ettt b et b etttk et b sttt st b e be et 39

5-6. Testing & New Board CONFig FilB.........c et 40
5-7. Example Board COoNnfig FilE.........o it 40
7-1. Specifying the conditional Xfail AALA..............cerrirriiie e 60

Vi

Abstract

This document attempts to describe the functionality of DejaGnu, the GNU Testing Framework. DejaGnu is entirely
written in Expect, which uses Tcl as a command language. Expect serves as a very programmable shell; you can run
any program, as with the usual Unix command shells---but once the program is started, your test script has fully
programmable control of its input and output. This does not just apply to the programs undexgestcan also

run any auxiliary program, such dgf or sh, with full control over its input and output.

DejaGnu itself is merely a framework for creation of a test suites. Test suites are distributed separately for each GNU
tool.

Chapter 1. Overview

1.1. What is DejaGnu ?

DejaGnu is a framework for testing other programs. Its purpose is to provide a single front end for all tests. Think of
it as a custom library of Tcl procedures crafted to support writing a test harn@estAdarnesss the testing

infrastructure that is created to support a specific program or tool. Each program can have multiple test suites, all
supported by a single test harness. DejaGnu is written in Expect, which in turn uses Tcl -- Tool command language.
There is more information on Tcl at the Scriptics (http://www.scriptics.com) web site, and the Expect web site is at
NIST (http://expect.nist.gov).

DejaGnu offers several advantages for testing:

- The flexibility and consistency of the DejaGnu framework make it easy to write tests for any program, with either
batch oriented, or interactive programs.

- DejaGnu provides a layer of abstraction which allows you to write tests that are portable to any host or target
where a program must be tested. For instance, a te&Bd can run (from any Unix based host) on any target
architecture that DejaGnu supports. Currently DejaGnu runs tests on many single board computers, whose
operating software ranges from just a boot monitor to a full-fledged, Unix-like realtime OS.

- All tests have the same output format. This makes it easy to integrate testing into other software development
processes. DejaGnu’s output is designed to be parsed by other filtering script, and it is also human readable.

- Using Tcl and expect, it's easy to create wrappers for existing test suites. By incorporating existing tests under
DejaGnu, it's easier to have a single set of report analyse programs..

Running tests requires two things: the testing framework, and the test suites themselves. Tests are usually written in
Expect using Tcl, but you can also use a Tcl script to run a test suite that is not based on Expect. (expect script
filenames conventionally usexpas a suffix; for example, the main implementation of the DejaGnu test driver is in

the file runtest.exp.)

Julia Menapace first coined the term “Deja Gnu” to describe an earlier testing framework at Cygnus Support she had
written for GDB. When we replaced it with the Expect-based framework, it was like DejaGnu all over again... But
more importantly, it was also named after my daughter,Deja Snow Savoye (mailto:deja@welcomehome.org) (now 9
years old in Dec of 1998), who was a toddler during DejaGnu’s creation.

1.2. What's New In This Release

This release has a hnumber of substantial changes over version 1.3. The most visible change is that the version of
Expect and Tcl included in the release are up-to-date with the current stable net releases. The biggest change is years
of modifications to the target configuration system, used for cross testing. While this greatly improved cross testing,

is has made that subsystem very complicated. The goal is to have this entirely rewritten using iTcl by the next

release. Other changes are:

Chapter 1. Overview

« More builtin support for building target binaries with the correct linker flags. Currently this only works with GCC
as the cross compiler, preferably with a target supportedixyloss

- Lots of little bug fixes from years of heavy use at Cygnus Solutions.
- DejaGnu now uses Automake for Makefile configuration.

- Updated documentation, now in SGML (using the free GNU DocBook tools
(http://nis-www.lanl.gov/~rosalia/mydocs/docbook-intro.html)) format.

« NT support. There is beta level support for NT that is still a work in progress. This requires the Cygwin
(http://sources.redhat.com) POSIX system for NT.

1.2.1. NT Support

To use DejaGnu on NT, you need to first install the Cygwin (http://sources.redhat.com/cygwin) release. This works
as of the B20.1 release. Cygwin is a POSIX system for NT. This covers both utility programs, and a libray that adds
POSIX system calls to NT. Among them is pseudo tty support for NT that emulates the POSIX pty standard. The
latest Cygwin is always available from this location (http://sources.redhat.com/cygwin). This works well enough to
run"make check'6f the GNU development tree on NT after a native build. But the nature of pty’s on NT is still
evolving. Your mileage may vary...

1.3. Design Goals

DejaGnu grew out of the internal needs of Cygnus Solutions. (then Cygnus Support). Cygnus maintained and
enhanced a variety of free programs in many different environments, and we needed a testing tool that:

+ was useful to developers while fixing bugs.

« automated running many tests during a software release process.
- was portable among a variety of host computers.

« supported cross-development testing.

+ permitted testing interactive programs, li&DB; and

- permitted testing batch oriented programs, €C.

Some of the requirements proved challenging. For example, interactive programs do not lend themselves very well to
automated testing. But all the requirements are important: for instance, it is imperative to make sGizBhabrks
as well when cross-debugging as it does in a native configuration.

Probably the greatest challenge was testing in a cross-development environment (which can be a real nightmare).
Most cross-development environments are customized by each developer. Even when buying packaged boards from
vendors there are many differences. The communication interfaces vary from a serial line to ethernet. DejaGnu was
designed with a modular communication setup, so that each kind of communication can be added as required, and

Chapter 1. Overview

supported thereafter. Once a communication procedure is coded, any test can use it. Currently DejaGnsltan use
rlogin, telnet, tip, kermit, andmondfe for remote communications.

1.4. A POSIX conforming test framework
DejaGnu conforms to the POSIX 1003.3 standard for test frameworks. | was also a member of that committe.

The POSIX standard 1003.3 defines what a testing framework needs to provide, in order to permit the creation of
POSIX conformance test suites. This standard is primarily oriented to running POSIX conformance tests, but its
requirements also support testing of features not related to POSIX conformance. POSIX 1003.3 does not specify a
particular testing framework, but at this time there is only one other POSIX conforming test framework: TET. TET
was created by Unisoft for a consortium comprised of X/Open, Unix International, and the Open Software
Foundation.

The POSIX documentation refersagsertionsAn assertion is a description of behavior. For example, if a standard
says “The sun shall shine”, a corresponding assertion might be “The sun is shining.” A test based on this assertion
would pass or fail depending on whether it is daytime or nighttime. It is important to note that the standard being
tested is never 1003.3; the standard being tested is some other standard, for which the assertions were written.

As there is no test suite to test testing frameworks for POSIX 1003.3 conformance, verifying conformance to this
standard is done by repeatedly reading the standard and experimenting. One of the main things 1003.3 does specify
is the set of allowed output messages, and their definitions. Four messages are supported for a required feature of
POSIX conforming systems, and a fifth for a conditional feature. DejaGnu supports the use of all five output
messages; in this sense a test suite that uses exactly these messages can be considered POSIX conforming. These
definitions specify the output of a test case:

PASS

A test has succeeded. That is, it demonstrated that the assertion is true.

XFAIL

POSIX 1003.3 does not incorporate the notion of expected failurd?\S&instead oiXPASSmust also be
returned for test cases which were expected to fail and did not. This meafABds in some sense more
ambiguous than iKPASSs also used.

FAIL

A test has produced the bug it was intended to capture. That is, it has demonstrated that the assertion is false.
TheFAIL message is based on the test case only. Other messages are used to indicate a failure of the framework.
As with PASS POSIX tests must retuffAIL rather thanXFAIL even if a failure was expected.

UNRESOLVED

A test produced indeterminate results. Usually, this means the test executed in an unexpected fashion; this
outcome requires that a human being go over results, to determine if the test should have passed or failed. This

Chapter 1. Overview

message is also used for any test that requires human intervention because it is beyond the abilities of the testing
framework. Any unresolved test should resolve®#&SSor FAIL before a test run can be considered finished.

Note that for POSIX, each assertion must produce a test result code. If the test isn’t actually run, it must produce
UNRESOLVEDather than just leaving that test out of the output. This means that you have to be careful when
writing tests, to not carelessly use tcl statementsn#tern---if you alter the flow of control of the tcl code you

must insure that every test still produces some result code.

Here are some of the ways a test may windUWRESOLVED

- Atest's execution is interrupted.

« Atest does not produce a clear result. This is usually because there E&REDRrom DejaGnu while
processing the test, or because there were three orWiaRNINGmessages. ADWARNINGor ERROR
messages can invalidate the output of the test. This usually requires a human being to examine the output to
determine what really happened---and to improve the test case.

- Atest depends on a previous test, which fails.

« The test was set up incorrectly.

UNTESTED

A test was not run. This is a placeholder, used when there is no real test case yet.

The only remaining output message left is intended to test features that are specified by the applicable POSIX
standard as conditional:

UNSUPPORTED

There is no support for the tested case. This may mean that a conditional feature of an operating system, or of a
compiler, is not implemented. DejaGnu also uses this message when a testing environment (often a “bare board”
target) lacks basic support for compiling or running the test case. For example, a test for the system subroutine
gethostnamavould never work on a target board running only a boot monitor.

DejaGnu uses the same output procedures to produce these messages for all test suites, and these procedures are
already known to conform to POSIX 1003.3. For a DejaGnu test suite to conform to POSIX 1003.3, you must avoid
the setupxfail} procedure as described in tlRASSsection above, and you must be careful to retNRESOLVED

where appropriate, as described in WdRESOLVEDsection above.

Chapter 2. Getting DejaGnu up and running

This chapter was originally written by Niklaus Giger (ngiger@mus.ch) because he lost a week to figure out how
DejaGnu works and how to write a first test.

Follow these instructions as closely a possible in order get a good insight into how DejaGnu works, else you might
run into a lot of subtle problems. You have been warned.

It should be no big problems installing DejaGnu using your package manager or from the source code. Under a
Debian/GNU/Linux systems just type (as root)

apt-get dejagnu

. These examples were run on a primary machine with a AMD K6 and a Mac Powerbook G3 serving as a remote
target.

The tests for Windows were run under Windows NT using the actual cygwin version (1.3.x as of October 2001). It's
target system was a PPC embedded system running vxWorks.

2.1. Test your installation

Create a new user called "dgt" (DejaGnuTest), which uses bash as it login shell. PS1 must be set to \u:\wW\$ " in its
~/.bashrc. Login as this user, create an empty directory and change the working directory to it. e.g

dgt:~$ mkdir ~/dejagnu.test
dgt:~$ cd ~/dejagnu.test

Now you are ready to test DejaGnu’s main program called ruuntest. The expecteted output is shown

Example 2-1. Runtest output in a empty directory

dgt:~/dejagnu.test$ runtest

WARNING: Couldn’t find the global config file.

WARNING: No tool specified Test

Run By dgt on Sun Nov 25 17:07:03 2001 Native configuration is i586-pc-linux-gnu

=== tests ===

Schedule of variations: unix

Running target unix Using /usr/share/dejagnu/baseboards/unix.exp as board description file for target.
Using /usr/share/dejagnu/config/unix.exp as generic interface file for target.

ERROR: Couldn't find tool config file for unix.

=== Summary ===

We will show you later how to get rid of all the WARNING- and ERROR-messages. The files testrun.sum and
testrun.log have been created, which do not interest us at this point. Let's remove them.

Chapter 2. Getting DejaGnu up and running

:~/dejagnu.test$ rm testrun.sum testrun.log

2.1.1. Windows

On Windows systems DejaGnu is part of a port of a lot of Unix tools to the Windows OS, called cygwin. Cygwin
may be downloaded and installed from a mirror of http://sources.redhat.com/cygwin/. All examples were also run on
Windows NT. If nothing is said, you can assume that you should get the same output as on a Unix system.

You will need a telnet daemon if you want to use a WindowsNT box as a remote target. There seems to be a freeware
telnet daemon at http://www.fictional.net/.

2.1.2. Getting the source code for the calc example

If you are running a Debian distribution you can find the examples under /usr/share/doc/dejagnu/examples. These
examples seem to be missing in RedHat's RPM. In this case download the sources of DejaGnu and adjust the pathes
to the DejaGnu examples accordingly.

2.2. Create a minimal project, e.g. calc

In this section you will to start a small project, using the sample application calc, which is part of your DejaGnu
distribution

2.2.1. A simple project without the GNU autotools

The runtest program can be run standalone. All the autoconf/automake support is just cause those programs are
commonly used for other GNU applications. The key to running runtest standalone is having the local site.exp file
setup correctly, which automake does.

The generated site.exp should like like:

set tool calc
set srcdir .
set objdir /home/dgt/dejagnu.test

Chapter 2. Getting DejaGnu up and running

2.2.2. Using autoconf/autoheader/automake

We have to prepare some input file in order to run autocon and automake. There is book “GNU autoconf, automake
and libtool” by Garry V. Vaughan, et al. NewRider, ISBN 1-57870-190-2 which describes this process thoroughly.

From the calc example distributed with the DejaGnu documentation you should copy the program file itself (calc.c)
and some additional files, which you might examine a little bit close to derive their meanings.

dgt:~/dejagnu.test$ cp -r /usr/share/doc/dejagnu/examples/calc/\
{configure.in,Makefile.am,calc.c,testsuite} .

In Makemake.am note the presence of the AUTOMAKE_OPTIONS = dejagnu. This option is needed.

Run aclocal to generate aclocal.m4, which is a collection of macros needed by configure.in

dgt:~/dejagnu.test$ aclocal

autoconf is another part of the auto-tools. Run it to generate configure based on information contained in configure.in.

dgt:~/dejagnu.test$ autoconf

autoheader is another part of the auto-tools. Run it to generate calc.h.in.

dgt:~/dejagnu.test$ autoheader

The Makefile.am of this example was developed as port of the DejaGnu distribution. Adapt Makefile.am for this test.
Replace the line “#noinst_ PROGRAMS = calc” to “bin_ PROGRAMS = calc”. Change the
RUNTESTDEFAULTFLAGS from “$$srcdir/testsuite” to “./testsuite”.

Running automake at this point contains a series of warning in its output as shown in the following example:

Example 2-2. Sample output of automake with missing files

dgt:~/dejagnu.test$ automake --add-missing

automake: configure.in: installing ‘./install-sh’

automake: configure.in: installing ‘./mkinstalldirs’

automake: configure.in: installing ‘./missing’

automake: Makefile.am: installing ‘./INSTALL’

automake: Makefile.am: required file ‘*./NEWS' not found
automake: Makefile.am: required file ‘./README’ not found
automake: Makefile.am: installing ‘./COPYING’

automake: Makefile.am: required file ‘/AUTHORS' not found
automake: Makefile.am: required file ‘./ChangelLog’ not found
configure.in: 4: required file ‘./calc.h.in’ not found
Makefile.am:6: required directory ./doc does not exist

Chapter 2. Getting DejaGnu up and running

Create a empty directory doc and empty files INSTALL, NEWS, README, AUTHORS, ChangelLog and
COPYING. The default COPYING will point to the GNU Public License (GPL). In a real project it would be time to
add some meaningfull text in each file.

Adapt calc to your environment by calling configure.

Example 2-3. Sample output of configure

dgt:~/dejagnu.test$./configure

creating cache ./config.cache

checking whether to enable maintainer-specific portions of Makefiles... no
checking for a BSD compatible install... /usr/bin/install -c
checking whether build environment is sane... yes

checking whether make sets ${MAKE}... yes

checking for working aclocal... found

checking for working autoconf... found

checking for working automake... found

checking for working autoheader... found

checking for working makeinfo... found

checking for gcc... gcc checking whether the C compiler (gcc) works... yes
checking whether the C compiler (gcc) is a cross-compiler... no
checking whether we are using GNU C... yes

checking whether gcc accepts -g... yes

checking for a BSD compatible install... /usr/bin/install -c
checking how to run the C preprocessor... gcc -E

checking for stdlib.h... yes

checking for strcmp... yes

updating cache ./config.cache

creating ./config.status

creating Makefile creating calc.h

If you are familiar with GNU software, this output should not contain any surprise to you. Any errors should be easy
to fix for such a simple program.

Build the calc executable:

Example 2-4. Sample output building calc

dgt:~/dejagnu.test$ make
gcc -DHAVE_CONFIG_H -I. -I. -I. -g -O2 -c calc.c
gcc -g -O2 -0 calc calc.o

You prepared a few files and then called some commands. Respecting the right order assures a automatic and
correctly compiled calc program. The following example resumes the correct order.

Chapter 2. Getting DejaGnu up and running

Example 2-5. Creating the calc program using the GNU autotools

dgt:~/dejagnu.test$ aclocal
dgt:~/dejagnu.test$ autoconf
dgt:~/dejagnu.test$ autoheader
dgt:~/dejagnu.test$ automake --add-missing
dgt:~/dejagnu.test$./configure
dgt:~/dejagnu.test$ make

Play with calc and verify whether it works correctly. A sample session might look like this:

dgt:~/dejagnu.test$./calc
calc: version

Version: 1.1

calc: add 3 4

7

calc: multiply 3 4
12

calc: multiply 2 4
12

calc: quit

Look at the intentional bug that 2 times 4 equals 12.

The tests run by DejaGnu need a file called site.exp, which is automatically generated if we call “make site.exp”.
This was the purpose of the “"AUTOMAKE_OPTIONS = dejagnu” in Makefile.am.

Example 2-6. Sample output generating a site.exp
dgt: make site.exp

dgt:~/dejagnu.test$ make site.exp
Making a new site.exp file...

2.3. Our first automated tests

2.3.1. Running the test for the calc example

Now we are ready to call the automated tests

Example 2-7. Sample output of runtest in a configured directory

dgt:~/dejagnu.test$ make check

make check-DEJAGNU

make[l]: Entering directory ‘/home/dgt/dejagnu.test’ srcdir="cd . && pwd’; export srcdir; \
EXPECT=expect; export EXPECT; \ runtest=runtest; \

Chapter 2. Getting DejaGnu up and running

if /bin/sh -c "$runtest --version" > /dev/null 2>&1; then \
$runtest --tool calc CALC='pwd‘/calc --srcdir ./testsuite ; \
else echo "WARNING: could not find \'runtest™ 1>&2; :;\
fi

WARNING: Couldn't find the global config file.
WARNING: Couldn't find tool init file

Test Run By dgt on Sun Nov 25 21:42:21 2001

Native configuration is i586-pc-linux-gnu

=== calc tests ===

Schedule of variations:
unix

Running target unix

Using /usr/share/dejagnu/baseboards/unix.exp as board description file for target.
Using /usr/share/dejagnu/config/unix.exp as generic interface file for target.
Using ./testsuite/config/unix.exp as tool-and-target-specific interface file.

Running ./testsuite/calc.test/calc.exp ...

FAIL: multiply2 (bad match)

=== calc Summary ===

of expected passes 5

of unexpected failures 1

/home/Dgt/dejagnu.test/calc version Version: 1.1

make[1]: *** [check-DEJAGNU] Fehler 1

make[1l]: Leaving directory ‘‘home/Dgt/dejagnu.test’ make: *** [check-am] Fehler 2

Did you see the line “FAIL:*? The test cases for calc catch the bug in the calc.c file. Fix the error in calc.c later as the
following examples assume a unchanged calc.c.

Examine the output files calc.sum and calc.log. Try to understand the testcases written in
~/dejagnu.test/testsuite/calc.test/calc.exp. To understand Expect you might take a look at the book "Exploring
Expect", which is an excellent resource for learning and using Expect. (Pub: O'Reilly, ISBN 1-56592-090-2) The
book contains hundreds of examples and also includes a tutorial on Tcl. Exploring Expect is 602 pages long.

2.3.2. The various config files or how to avoid warnings

DejaGnu may be customized by each user. It first searches for a file called ~/.dejagnurc. Create the file ~/.dejagnurc
and insert the following line:

puts "I am ~/.dejagnurc”

Rerun make check. Test whether the output contains "l am ~/.dejagnurc”. Create ~/my_dejagnu.exp and insert the
following line:

puts "I am ~/my_dejagnu.exp"”

10

Chapter 2. Getting DejaGnu up and running

In a Bash-Shell enter

dgt:~/dejagnu.test$ export DEJAGNU=~/my_dejagnu.exp

Run “make check” again. The output should not contain “WARNING: Couldn’t find the global config file.”. Create
the sub-directory lib. Create the file “calc.exp” in it and insert the following line:

puts "I am lib/calc.exp”

The last warning “WARNING: Couldn't find tool init file” should not be part of the output of make check. Create the
directory ~/boards. Create the file ~/boards/standard.exp and insert the following line:

puts "I am boards/standard.exp"

If the variable DEJAGNU is still not empty then the (abbreviated) output of “make check” should look like this:

Example 2-8. Sample output of runtest with the usual configuration files

dgt:~/dejagnu.test$ make check

<.>

fi

I am ~/.dejagnurc

| am ~/my_dejagnu.exp

I am lib/calc.exp

Test Run By dgt on Sun Nov 25 22:19:14 2001
Native configuration is i586-pc-linux-gnu

=== calc tests ===
Using /home/Dgt/boards/standard.exp as standard board description\
file for build.
| am ~/boards/standard.exp
Using /home/Dgt/boards/standard.exp as standard board description\
file for host.
I am ~/boards/standard.exp

Schedule of variations:
unix

Running target unix

Using /home/Dgt/boards/standard.exp as standard board description\
file for target.

| am ~/boards/standard.exp

Using /usr/share/dejagnu/baseboards/unix.exp as board description file\
for target.

<.>

It is up to you to decide when and where to use any of the above mentioned config files for customizing. This
chapters showed you where and in which order the different config files are run.

11

Chapter 2. Getting DejaGnu up and running

2.3.3. When trouble strikes

Calling runtest with the ’-v'-flag shows you in even more details which files are searched in which order. Passing it
several times gives more and more details.

Example 2-9. Displaying details about runtest execution

runtest -v -v -v --tool calc CALC=‘pwd‘/calc --srcdir ./testsuite
Calling runtest with the ’--debug’-flag logs a lot of details to dbg.log where you can analyse it afterwards.

In all test cases you can temporary adjust the verbosity of information by adding the following Tcl-command:

set verbose 9

2.3.4. Testing “Hello world” locally
This test checks, whether the built-in shell command “echo Hello world” will really write “Hello world” on the
console. Create the file ~/dejagnu.test/testsuite/calc.test/local_echo.exp. It should contain the following lines

Example 2-10. A first (local) test case

set test "Local Hello World"
send "echo Hello World"
expect {
-re "Hello World" { pass "$test" }
}

Run runtest again and verify the output “calc.log”

2.4. A first remote test

Testing remote targets is a lot trickier especially if you are using an embedded target which has no built in support for
things like a compiler, ftp server or a Bash-shell. Before you can test calc on a remote target you have to acquire a
few basics skills.

2.4.1. Setup telnet to your own host

The easiest remote host is usually the host you are working on. In this example we will use telnet to login in your
own workstation. For security reason you should never have a telnet deamon running on machine connected on the

12

Chapter 2. Getting DejaGnu up and running

internet, as password and usernames are transmitted in clear text. We assume you know how to setup your machine
for a telnet daemon.

Next try whether you may login in your own host by issuing the command “telnet localhost.1”. In order to be able to
distinguish between a normal session an a telnet login add the following lines to /home/dgt/.bashrc.

if ["SREMOTEHOST"]
then

PS1="remote:\w\$ ’
fi

Now on the machine a “remote” login looks like this:

Example 2-11. Sample log of a telnet login to localhost

dgt:~/dejagnu.test$ telnet localhost

Trying 127.0.0.1...

Connected to 127.0.0.1.

Escape character is "].

Debian GNU/Linux testing/unstable Linux

K6Linux login: dgt

Password:

Last login: Sun Nov 25 22:46:34 2001 from localhost on pts/4
Linux K6Linux 2.4.14 #1 Fre Nov 16 19:28:25 CET 2001 i586 unknown
No mail.

remote:~$ exit

logout

Connection closed by foreign host.

2.4.2. A test case for login via telnet

In order to define a correct setup we have add a line containing “set target unix” either to ~/.dejagnurc or to
~/my_dejagnu.exp. In ~/boards/standard.exp add the following four lines to define a few patterns for the DejaGnu
telnet login procedure.

Example 2-12. Defining a remote target board

set_board_info shell_prompt "remote:"
set_board_info telnet_username "dgt"
set_board_info telnet_password "top_secret"
set_board_info hostname "localhost"

As DejaGnu will be parsing the telnet session output for some well known pattern the output there are a lot of things
that can go wrong. If you have any problems verify your setup:

+ Is/etc/motd empty?

+ Is/etc/issue.net empty?

13

Chapter 2. Getting DejaGnu up and running

« Exists a empty/.hushlogin ~ ?

« The LANG environment variable must be either empty or set to “C".

To test the login via telnet write a sample test case. Create the file ~/dejagnu.test/testsuite/calc.test/remote_echo.exp
and add the following few lines:

Example 2-13. DejaGnu script for logging in into a remote target

puts "this is remote_echo.exp target for S$target "
target_info $target
#set verbose 9
set shell_id [remote_open $target]
set test "Remote login to $target"
#set verbose 0
puts "Spawn id for remote shell is $shell_id"
if { $shel_id > 0 } {
pass "$test"
} else {
fail "Remote open to $target"

}

In the runtest output you should find something like:

Running ./testsuite/calc.test/local_echo.exp ...
Running ./testsuite/calc.test/remote_echoo.exp ...
this is remote_echo.exp target is unix

Spawn id for remote shell is exp7

Have again a look at calc.log to get a feeling how DejaGnu and expect parse the input.

2.4.3. Remote testing “Hello world”

Next you will transform the above “hello world” example to its remote equivalent. This can be done by adding the
following lines to our file remote_echo.exp.

Example 2-14. A first (local) remote "Hello world" test

set test "Remote_send Hello World"
set status [remote_send $target "echo \"Hello World\"\n"]
pass "$test"
set test "Remote_expect Hello World"
remote_expect $target 5 {
-re "Hello World" { pass "$test" }

}

Call make check. The output should contain “# of expected passes 9" and “# of unexcpected failures 1".

14

Chapter 2. Getting DejaGnu up and running

Have a look at the procedures in /usr/share/dejagnu/remote.exp to have an overview of the offered procedures and
their features.

Now setup a real target. In the following example we assume as target a PowerBook running Debian. As above add a
test user "dgt", install telnet and FTP servers. In order to distinguish it from the host add the line

PS1="test:>’

to /nome/dgt/.bash_profile. Also add a corresponding entry "powerbook" to /etc/hosts and verify that you are able to
ping, telnet and ftp to the target "powerbook".

In order to let runtest run its test on the "powerbook" target change the following lines in ~/boards/standard.exp:

Example 2-15. Board definition for a remote target

set_board_info protocol "telnet”
set_board_info telnet_username "dgt"
set_board_info telnet_password "top_secret"
set_board_info shell_prompt "test:> "
set_board_info hostname "powerbook"

Now call runtest again with the same arguments and verify whether all went okay by taking a close look at calc.log.

2.4.4. Transferring files from/to the target

A simple procedure like this will do the job for you:

Example 2-16. Test script to transfer a file to a remote target

set test "Remote_download"

puts "Running Remote_download"
set verbose 9

set remfile /home/dgt/dejagnu2

set status [remote_download $target /home/dgt/.dejagnurc $remfile]

if { "$status” == " } {
fail "Remote download to $remfile on $target"
} else {
pass "$test"
}

puts "status of remote_download ist $status"
set verbose 0

After running runtest again, check whether the file dejagnu?2 exists on the target. This example will only work if the
rcp command works with your target. If you have a working FTP-server on the target you can use it by adding the
following lines to ~/boards/standard.exp:

15

Chapter 2. Getting DejaGnu up and running

Example 2-17. Defining a board to use FTP as file transport

set_board_info file_transfer "ftp"
set_board_info ftp_username "dgt"
set_board_info ftp_password "1234"

2.4.5. Preparing for crosscompilation

For crosscompiling you need working binutils, gcc and a base library like libc or glib for your target. It is beyond the
scope of this document to describe how to get it working. The following examples assume a cross compiler for
PowerPC which is called linux-powerpc-gcc.

Add AC_CANONICAL_TARGET in dejagnu.test/configure.in at the following location. Copy config.guess from
/usr/share/automake to dejagnu.test.

AM_CONFIG_HEADER(calc.h)
AC_CANONICAL_TARGET([])
AM_INIT_AUTOMAKE(calc, 1.1)

You need to run automake 2.5 or later. Depending on your installation calling autoconf2.5 instead of autoconf is not
needed. The sequence to regenerate all files is:

Example 2-18. Using autotools for cross development

$ autoconf2.5

$ autoheader

$ automake

$./configure --host=powerpc-linux --target=powerpc-linux

configure: WARNING: If you wanted to set the --build type, don't use --host.
If a cross compiler is detected then cross compile mode will be used.

checking build system type... ./config.guess: ./config.guess: No such file or directory

configure: error: cannot guess build type; you must specify one

$ cp /usr/share/automake/config.guess .

$./configure --host=powerpc-linux --target=powerpc-linux

configure: WARNING: If you wanted to set the --build type, don't use --host.

If a cross compiler is detected then cross compile mode will be used. \

checking build system type... i586-pc-linux-gnu

checking host system type... powerpc-unknown-linux-gnu

<.>

checking whether we are cross compiling... yes

<.>

Configuration:

Source code location: .

C Compiler: powerpc-linux-gcc

C Compiler flags: -g -O2

Everything should be ready to recompile for the target:

16

Chapter 2. Getting DejaGnu up and running
$ make

powerpc-linux-gcc -DHAVE_CONFIG_H -I. -I. -l. -g -O2 -c calc.c
powerpc-linux-gcc -g -O2 -o calc calc.o

2.4.6. Remote testing of calc

Not yet written, as | have problem getting libc6-dev-powerpc to work. Probably | first have to build my cross
compiler.

2.4.7. Using WindowsNT as host and vxWorks as target
A more thorough walk-through will be written in a few weeks.

In order to test the vxWorks as a target | changed boards/standards.exp to reflect my settings (IP, username,
password). Then | reconfigured vxWorks to include a FTP and telnet server (using the same username/password
combination ad in boards/standard.exp).

With this setup and some minor modification (e.g. replacing echo by printf) in my test cases | could test my vxWorks
system. It sure does not seem to be a correct setup by DejaGnu standard. For instance, it still loading
/usr/share/dejagnu/baseboards/unix.exp instead of vxWorks. In any case | found that (at least under WindowsNT) |
did not find out how the command line would let me override settings in my personal config files.

17

Chapter 3. Running Tests

There are two ways to execute a test suite. The most common way is when there is existing suppbrikefilee .
This support consists oféhecktarget. The other way is to execute thumtest program directly. To rumuntest
directcly from the command line requires either all the correct options, drdbal Config Filemust be setup
correctly.

3.1. Make check

To run tests from an existing collection, first usenfigure as usual to set up the build directory. Then try typing:

make check

If the checktarget exists, it usually saves you some trouble. For instance, it can set up any auxiliary programs or other
files needed by the tests. The most common file the check builds s&t¢hexp The site.exp file contains various

variables that DejaGnu used to dertermine the configuration of the program being tested. This is mostly for
supporting remote testing.

Thechecktarget is supported by GNU Automake. To have DejaGnu support added to your genxledéic.in |
just add the keyword dejagnu to the AUTOMAKE_OPTIONS variable in yaakefile.am file.

Once you have rumake checko build any auxiliary files, you can invoke the test driventest directly to repeat
the tests. You will also have to executatest directly for test collections with nohecktarget in theMakefile

3.2. Runtest

runtest is the executable test driver for DejaGnu. You can specify two kinds of things onrtkest command line:
command line options, and Tcl variables for the test scripts. The options are listed alphabetically below.

runtest returns an exit code df if any test has an unexpected result; otherwise (if all tests pass or fail as expected) it
returns0 as the exit code.

3.2.1. Output States

runtest flags the outcome of each test as one of these cAde@©SIX Conforming Test Framewofkr a
discussion of how POSIX specifies the meanings of these cases.

18

Chapter 3. Running Tests

PASS

The most desirable outcome: the test succeeded, and was expected to succeed.

XPASS

A pleasant kind of failure: a test was expected to fail, but succeeded. This may indicate progress; inspect the test
case to determine whether you should amend it to stop expecting failure.

FAIL

A test failed, although it was expected to succeed. This may indicate regress; inspect the test case and the failing
software to ocate the bug.

XFAIL

A test failed, but it was expected to fail. This result indicates no change in a known bug. If a test fails because
the operating system where the test runs lacks some facility required by the test, the outcome is
UNSUPPORTEDNstead.

UNRESOLVED

Output from a test requires manual inspection; the test suite could not automatically determine the outcome. For
example, your tests can report this outcome is when a test does not complete as expected.

UNTESTED

A test case is not yet complete, and in particular cannot yet prodB&&8&or FAIL. You can also use this
outcome in dummy “tests” that note explicitly the absence of a real test case for a particular property.

UNSUPPORTED

A test depends on a conditionally available feature that does not exist (in the configured testing environment).
For example, you can use this outcome to report on a test case that does not work on a particular target because
its operating system support does not include a required subroutine.

runtest may also display the following messages:

ERROR

Indicates a major problem (detected by the test case itself) in running the test. This is usually an unrecoverable
error, such as a missing file or loss of communication to the target. (POSIX test suites should not emit this
message; USENSUPPORTEDUNTESTED or UNRESOLVEDnNstead, as appropriate.)

WARNING

Indicates a possible problem in running the test. Usually warnings correspond to recoverable errors, or display
an important message about the following tests.

NOTE

An informational message about the test case.

19

Chapter 3. Running Tests

3.2.2. Invoking Runtest

This is the full set of command line options thattest recognizes. Arguments may be abbreviated to the shortest
unique string.

-al (-a)

Display all test output. By defaultuntestshows only the output of tests that produce unexpected results; that is,
tests with statuSAIL (unexpected failure)XPASSunexpected success), BRRORa severe error in the test

case itself). Specify-all to see output for tests with statBASSsuccess, as expectedfAlL (failure, as

expected), oWARNING(minor error in the test case itself).

--build [string]

stringis a full configuration “triple” name as used bgnfigure. This is the type of machine DejaGnu and the
tools to be tested are built on. For a normal cross this is the same as the host, but for a canadian cross, they are
seperate.

--host [string]

string is a full configuration “triple” name as used tgnfigure Use this option to override the default string
recorded by your configuration’s choice of host. This choice does not change how anything is actually
configured unless --build is also specified; it affemtéy DejaGnu procedures that compare the host string with
particular values. The procedurishost istarget isnative andsetupxfail} are affected by--host In this usage,
hostrefers to the machine that the tests are to be run on, which may not be the sambukitmachine. If

--build is also specified, thenhostrefers to the machine that the tests wil, be run on, not the machine DejaGnu
is run on.

--host_board [name]

The host board to use.

--target [string]

Use this option to override the default setting (running native testténg is a full configuration “triple” name
of the formcpu-vendor-oss used byonfigure. This option changes the configuratinmtestuses for the
default tool names, and other setup information.

--debug (-de)

Turns on theexpecinternal debugging output. Debugging output is displayed as part e@ititestoutput, and
logged to a file calledbg.log . The extra debugging output doest appear on standard output, unless the
verbose level is greater than 2 (for instance, to see debug output immediately, syudhfygv -v}). The
debugging output shows all attempts at matching the test output of the tool with the scripted patterns describing
expected output. The output generated witiracealso goes intalbg.log

--help (-he)

Prints out a short summary of thentestoptions, then exits (even if you also specify other options).

--ignore [name(s)]

The names of specific tests to ignore.

20

Chapter 3. Running Tests

--objdir [path]

Usepathas the top directory containing any auxiliary compiled test code. This defaultd.tse this option to
locate pre-compiled test code. You can normally prepare any auxiliary files neededatkith

--outdir [path]

Write output logs in directorgath . The default is}, thedirectory where you startintest This option affects
only the summary and the detailed log fitesl.sum andtool.log . The DejaGnu debug logdpg.log
always appears (when requested) in the local directory.

--reboot [name]

Reboot the target board whemntestinitializes. Usually, when running tests on a separate target board, it is
safer to reboot the target to be certain of its state. However, when developing test scripts, rebooting takes a lot of
time.

--srcdir [path]

Usepath as the top directory for test scripts to ruantestlooks in this directory for any subdirectory whose
name begins with the toolname (specified witool). For instance, with-toolgdb}, runtestuses tests in
subdirectoriegdb.* (with the usual shell-like filename expansion). If you do not-usecdir, runtestlooks for
test directories under the current working directory.

--strace [number]

Turn on internal tracing foexpectto n levels deep. By adjusting the level, you can control the extent to which
your output expands multi-level Tcl statements. This allows you to ignore some leadseifr if statements.
Each procedure call or control structure counts as one “level”. The output is recorded in the saihg.filg, ,
used for output from-debug

--connect [program]

Connect to a target testing environment as specifiety g if the target is not the computer runningntest
For example, useconnecto change the program used to connect to a “bare board” boot monitor. The choices
for typein the DejaGnu 1.4 distribution aréogin, telnet rsh, tip, kermit, andmondfe

The default for this option depends on the configuration most convenient communication method available, but
often other alternatives work as well; you may find it useful to try alternative connect methods if you suspect a
communication problem with your testing target.

--baud [number]

Set the default baud rate to something other than 9600. (Some serial interface progratips Ugea separate
initialization file instead of this value.)

--target_board [name(s)]

The list of target boards to run tests on.

21

Chapter 3. Running Tests

--tool[name(s)]

Specifies which test suite to run, and what initialization module to-ttsel is usedonly for these two
purposes. It isiotused to name the executable program to test. Executable tool names (and paths) are recorded
in site.exp and you can override them by specifying Tcl variables on the command line.

For example, including-“tool gcc" on theruntestcommand line runs tests from all test subdirectories whose
names matchcc.* , and uses one of the initialization modules naroadig/*-gcc.exp . To specify the

name of the compiler (perhaps as an alternative path to mhédstwould use by default), ussCC=binname

on theruntestcommand line.

--tool_exec [name]

The path to the tool executable to test.

--tool_opts [options]

A list of additional options to pass to the tool.

--verbose (-V)

Turns on more output. Repeating this option increases the amount of output displayed. Levé) isrsnply
test output. Level two-¢-v}) shows messages on options, configuration, and process control. Verbose messages
appear in the detailed.log) log file, but not in the summary.6um) log file.

--version (-V)

Prints out the version numbers of DejaGeupectand Tcl, and exits without running any tests.

--D[0-1]

Start the internal Tcl debugger. The Tcl debugger supports breakpoints, single stepping, and other common
debugging activities. See the document "Debugger for Tcl Applications” by Don Libes. (Distributed in
PostScript form wittexpectas the fileexpect/tcl-debug.ps. . If you specify-D1, theexpectshell stops at a
breakpoint as soon as DejaGnu invokes it. If you spedif, DejaGnu starts as usual, but you can enter the
debugger by sending an interrupt (e.g. by typGg).

testfile .exp[=arg(s)]

Specify the names of testsuites to run. By defaulitestruns all tests for the tool, but you can restrict it to
particular testsuites by giving the names of tep expecscripts that control thentestsuiteexp may not
include path information; use plain filenames.

testfile .exp="testfilel ..."

Specify a subset of tests in a suite to run. For compiler or assembler tests, which often use.axgisghgt

covering many different source files, this option allows you to further restrict the tests by listing particular

source files to compile. Some tools even support wildcards here. The wildcards supported depend upon the tool,
but typically they are?, *, and[chars].

22

Chapter 3. Running Tests

tclvar=value

You can define Tcl variables for use by your test scripts in the same style usexhak#fior environment
variables. For exampleyuntest GDB=gdb.oldlefines a variable callé@DB; when your scripts refer to $GDB
in this run, they use the valuggb.old

The default Tcl variables used for most tools are defined in the main Dejefakefile their values are
captured in thaite.exp file.

3.2.3. Common Options

Typically, you don’t need must to use any command-line optietsl used is only required when there are more
than one test suite in the same directory. The default options are in the local site.exp file, created by "make site.exp".

For example, if the directorydb/testsuite contains a collection of DejaGnu tests for GDB, you can run them
like this:

eg$ cd gdb/testsuite
eg$ runtest --tool gdb
Test output follows, ending with:
=== gdb Summary ===
of expected passes 508
of expected failures 103
/usr/latest/bin/gdb version 4.14.4 -nx
You can use the optiofisrcdir to point to some other directory containing a collection of tests:

eg$ runtest--srcdir /devo/gdb/testsuite

By default,runtest prints only the names of the tests it runs, output from any tests that have unexpected results, and a
summary showing how many tests passed and how many failed. To display output from all tests (whether or not they
behave as expected), use thal option. For more verbose output about processes being run, communication, and so
on, use-verbose To see even more output, use multipieerboseoptions. for a more detailed explanation of each
runtest option.

Test output goes into two files in your current directory: summary outpwblrsum , and detailed output in
tool.log . (tool refers to the collection of tests; for example, after a run wtiol gdb, look for output files
gdb.sum andgdb.log .)

23

Chapter 3. Running Tests

3.3. The files DejaGnu produces.

DejaGnu always writes two kinds of output files: summary logs and detailed logs. The contents of both of these are
determined by your tests.

For troubleshooting, a third kind of output file is useful: usebug to request an output file showing details of
what Expect is doing internally.

3.3.1. Summary File

DejaGnu always produces a summary outputtfitt. sum . This summary shows the names of all test files run; for
each test file, one line of output from egahisscommand (showing statiBASSor XPAS$ or fail command (status

FAIL or XFAIL); trailing summary statistics that count passing and failing tests (expected and unexpected); and the
full pathname and version number of the tool tested. (All possible outcomes, and all errors, are always reflected in
the summary output file, regardless of whether or not you speaify .)

If any of your tests use the procedurewesolved unsupported, or runtested, the summary output also tabulates
the corresponding outcomes.

For example, afteruntest --tool binutils, look for a summary log iminutils.sum . Normally, DejaGnu writes
this file in your current working directory; use theutdir ~ option to select a different directory.

Example 3-1. Here is a short sample summary log

Test Run By rob on Mon May 25 21:40:57 PDT 1992

=== gdb tests ===

Running ./gdb.t00/echo.exp ...

PASS: Echo test

Running ./gdb.all/help.exp ...

PASS: help add-symbol-file

PASS: help aliases

PASS: help breakpoint "bre" abbreviation

FAIL: help run "r" abbreviation

Running ./gdb.t10/crossload.exp ...

PASS: m68k-elf (elf-big) explicit format; loaded

XFAIL: mips-ecoff (ecoff-bigmips) "ptype v_signed_char" signed C types
=== gdb Summary ===

of expected passes 5

of expected failures 1

of unexpected failures 1

/usr/latest/bin/gdb version 4.6.5 -q

24

Chapter 3. Running Tests
3.3.2. Log File

DejaGnu also saves a detailed log fiel.log , showing any output generated by tests as well as the summary
output. For example, afteuntest --tool binutils, look for a detailed log iminutils.log . Normally, DejaGnu
writes this file in your current working directory; use theutdir ~ option to select a different directory.

Example 3-2. Here is a brief example showing a detailed log for G++ tests

Test Run By rob on Mon May 25 21:40:43 PDT 1992
=== g++ tests ===

--- Running ./g++.other/t01-1.exp ---
PASS: operate delete

--- Running ./g++.other/t01-2.exp ---

FAIL: i960 bug EOF
p0000646.C: In function ‘int warn_return_1 ()"
p0000646.C:109: warning: control reaches end of non-void function
p0000646.C: In function ‘int warn_return_arg (int)"
p0000646.C:117: warning: control reaches end of non-void function
p0000646.C: In function ‘int warn_return_sum (int, int)":
p0000646.C:125: warning: control reaches end of non-void function
p0000646.C: In function ‘struct foo warn_return_foo ()"
p0000646.C:132: warning: control reaches end of non-void function

--- Running ./g++.other/t01-4.exp ---
FAIL: abort
900403_04.C:8: zero width for bit-field ‘foo’
--- Running ./g++.other/t01-3.exp ---
FAIL: segment violation
900519 12.C:9: parse error before *;

900519 12.C:12: Segmentation violation
lusr/latest/bin/gcc: Internal compiler error: program cclplus got fatal signal

=== g++ Summary ===
of expected passes 1

of expected failures 3
lusr/latest/bin/g++ version cygnus-2.0.1

3.3.3. Debug Log File

With the--debug option, you can request a log file showing the output from Expect itself, running in debugging
mode. This file dbg.log , in the directory where you stamtintest) shows each pattern Expect considers in
analyzing test output.

25

Chapter 3. Running Tests

This file reflects eackendcommand, showing the string sent as input to the tool under test; and each Expect
command, showing each pattern it compares with the tool output.

Example 3-3. The log messages begin with a message of the form

expect: does {tool output} (spawn_id n)
match pattern { expected pattern }?

For every unsuccessful match, Expect issure after this message; if other patterns are specified for the same
Expect command, they are reflected also, but without the first part of the mesgaget(.. match patteyn

When Expect finds a match, the log for the successful match endyegtfollowed by a record of the Expect
variables set to describe a successful match.

Example 3-4. Here is an excerpt from the debugging log for a GDB test:

send: sent {break gdbme.c:34\n} to spawn id 6
expect: does {} (spawn_id 6) match pattern {Breakpoint.*at.* file
gdbme.c, line 34.*\(gdb\) $}? no
{*\(gdb\) $}? no
expect: does {} (spawn_id 0) match pattern {return} ? no
{\(y or n\) }? no
{buffer_full}? no
{virtual}? no
{memory}? no
{exhausted}? no
{Undefined}? no
{command}? no
break gdbme.c:34
Breakpoint 8 at 0x23d8: file gdbme.c, line 34.
(gdb) expect: does {break gdbme.c:34\r\nBreakpoint 8 at 0x23d8:
file gdbme.c, line 34.\r\n(gdb) } (spawn_id 6) match pattern
{Breakpoint.*at.* file gdbme.c, line 34.*\(gdb\) $}? yes
expect: set expect_out(0,start) {18}
expect: set expect_out(0,end) {71}
expect: set expect_out(0,string) {Breakpoint 8 at 0x23d8: file
gdbme.c, line 34.\r\n(gdb) }
epect: set expect_out(spawn_id) {6}
expect: set expect_out(buffer) {break gdbme.c:34\r\nBreakpoint 8
at 0x23d8: file gdbme.c, line 34.\nn(gdb) }
PASS: 70 0 breakpoint line number in file

This example exhibits three properties of Expect and DejaGnu that might be surprising at first glance:

- Empty output for the first attempted match. The first set of attempted matches shown ran against tHg eutput
that is, no output. Expect begins attempting to match the patterns supplied immediately; often, the first pass is
against incomplete output (or completely before all output, as in this case).

26

Chapter 3. Running Tests

- Interspersed tool output. The beginning of the log entry for the second attempted match may be hard to spot: this is
because the promjtgdb) } appears on the same line, just beforedRkpectithat marks the beginning of the log
entry.

. Fail-safe patterns. Many of the patterns tested are fail-safe patterns provided by GDB testing utilities, to reduce
possible indeterminacy. It is useful to anticipate potential variations caused by extreme system conditions (GDB
might issue the messagetual memory exhausted rare circumstances), or by changes in the tested program
(Undefined commanid the likeliest outcome if the name of a tested command changes).

The patterdreturn} is a particularly interesting fail-safe to notice; it checks for an unexpeREH prompt. This
may happen, for example, if the tested tool can filter output through a pager.

These fail-safe patterns (like the debugging log itself) are primarily useful while developing test scripts. Use the
error procedure to make the actions for fail-safe patterns produce messages startiBRR{Hon standard
output, and in the detailed log file.

27

Chapter 4. Customizing DejaGnu

The site configuration filesite.exp , captures configuration-dependent values and propagates them to the DejaGnu
test environment using Tcl variables. This ties the DejaGnu test scripts intotifigure andmake programs. If this
file is setup correctly, it is possible to execute a test suite merely by typmtgst.

DejaGnu supports twsite.exp files. The multiple instances efte.exp are loaded in a fixed order built into
DejaGnu. The first file loaded is the local fiize.exp , and then the optional globsite.exp file as pointed to by
the DEJAGNU environment variable.

There is an optionahastersite.exp , capturing configuration values that apply to DejaGnu across the board, in

each configuration-specific subdirectory of the DejaGnu library direatongest loads these values first. The master
site.exp contains the default values for all targets and hosts supported by DejaGnu. This master file is identified by
setting the environment variable DEJAGNU to the name of the file. This is also refered to as the “global” config file.

Any directory containing a configured test suite also has a kieaéxp , capturing configuration values specific to
the tool under test. Sinaeintest loads these values last, the individual test configuration can either rely on and use,
or override, any of the global values from the globigd.exp file.

You can usually generate or update the testsuite’s kigadxp by typingmake site.expin the test suite directory,
after the test suite is configured.

You can also have a file in your home directory callgglagnurc . This gets loaded first before the other config
files. Usually this is used for personal stuff, like setting the all_flag so all the output gets printed, or your own
verbosity levels. This file is usually restricted to setting command line options.

You can further override the default values in a user-editable section aftaregxp , or by setting variables on the
runtest command line.

4.1. Local Config File

It is usually more convenient to keep thesanual overridedn thesite.exp local to each test directory, rather than
in the globalsite.exp in the installed DejaGnu library. This file is mostly for supplying tool specific info that is
required by the test suite.

All local site.exp files have two sections, separated by comment text. The first section is the part that is generated
by make. It is essentially a collection of Tcl variable definitions basedvaikefile environment variables. Since

they are generated byake, they contain the values as specifieddmpfigure. (You can also customize these values

by using the-site option toconfigure.) In particular, this section contains theakefile variables for host and

target configuration data. Do not edit this first section; if you do, your changes are replaced next timeyakeun

28

Chapter 4. Customizing DejaGnu

Example 4-1. The first section starts with

these variables are automatically generated by make
Do not edit here. If you wish to override these values
add them to the last section

In the second section, you can override any default values (locally to DejaGnu) for all the variables. The second
section can also contain your preferred defaults for all the command line opticnsést. This allows you to easily
customizeruntest for your preferences in each configured test-suite tree, so that you need not type options
repeatedly on the command line. (The second section may also be empty, if you do not wish to override any defaults.)

Example 4-2. The first section ends with this line

All variables above are generated by configure. Do Not Edit

You can make any changes under this line. If you wish to redefine a variable in the top section, then just put a
duplicate value in this second section. Usually the values defined in this config file are related to the configuration of
the test run. This is the ideal place to set the variables host_triplet, build_triplet, target_triplet. All other variables are
tool dependant, i.e., for testing a compiler, the value for CC might be set to a freshly built binary, as opposed to one
in the user’s path.

Here’s an example local site.exp file, as used for GCC/G++ testing.

Example 4-3. Local Config File

these variables are automatically generated by make

Do not edit here. If you wish to override these values

add them to the last section

set rootme "/build/devo-builds/i586-pc-linux-gnulibcl/gcc”

set host_triplet i586-pc-linux-gnulibcl

set build_triplet i586-pc-linux-gnulibcl

set target_triplet i586-pc-linux-gnulibcl

set target_alias i586-pc-linux-gnulibcl

set CFLAGS ™

set CXXFLAGS "-l/build/devo-builds/i586-pc-linux-gnulibcl/gcc/../libio -I$srcdir/../libg++/src -I$srcdir/../libio -I$srcdir/../libstdc
append LDFLAGS " -L/build/devo-builds/i586-pc-linux-gnulibcl/gcc/../Id"
set tmpdir /build/devo-builds/i586-pc-linux-gnulibcl/gcc/testsuite

set srcdir "${srcdir}/testsuite"

All variables above are generated by configure. Do Not Edit

This file defines the required fields for a local config file, namely the three config triplets, and the srcdir. It also
defines several other Tcl variables that are used exclusivly by the GCC test suite. For most test cases, the
CXXFLAGS and LDFLAGS are supplied by DejaGnu itself for cross testing, but to test a compiler, GCC needs to
manipulate these itself.

29

Chapter 4. Customizing DejaGnu

4.2. Global Config File

The master config file is where all the target specific config variables get set for a whole site get set. The idea is that
for a centralized testing lab where people have to share a target between multiple developers. There are settings for
both remote targets and remote hosts. Here’s an example of a Master Config File (also called the Global config file)
for acanadian crossA canadian cross is when you build and test a cross compiler on a machine other than the one
it's to be hosted on.

Here we have the config settings for our California office. Note that all config values are site dependant. Here we
have two sets of values that we use for testing m68k-aout cross compilers. As both of these target boards has a
different debugging protocol, we test on both of them in sequence.

Example 4-4. Global Config file

Make sure we look in the right place for the board description files.
if ![info exists boards_dir] {
set boards_dir {}

}
lappend boards_dir "/nfs/cygint/sl/cygnus/dejagnu/boards"

verbose "Global Config File: target_triplet is $target_triplet" 2
global target_list

case "$target_triplet" in {
{ "native" } {
set target_list "unix"
}
{ "sparc64-*elf" } {
set target_list "sparc64-sim"

}
{ "mips-*elf" } {

set target_list "mips-sim wilma barney"
}

{ "mips-Isi-elf* } {
set target_list "mips-Isi-sim{,soft-float,el}"

}
{ "sh-*hms" } {

set target_list { "sh-hms-sim" "bloozy" }
}

In this case, we have support for several cross compilers, that all run on this host. For testing on operating systems
that don't support Expect, DejaGnu can be run on the local build machine, and it can connect to the remote host and
run all the tests for this cross compiler on that host. All the remote OS requires is a working telnetd.

As you can see, all one does is set the variable target_list to the list of targets and options to test. The simple settings,
like for sparc64-elfonly require setting the name of the single board config file. Mips-elftarget is more

30

Chapter 4. Customizing DejaGnu

complicated. Here it sets the list to three target boards. One is the default mips target, andrbatharneyare
symbolic names for other mips boards. Symbolic names are coveredAattieg A New Boardchapter. The more
complicated example is the one foips-Isi-elf. This one runs the tests with multiple iterations using all possible
combinations of the-soft-float and the-el (little endian) option. Needless to say, this last feature is mostly
compiler specific.

4.3. Board Config File

The board config file is where board specfic config data is stored. A board config file contains all the higher-level
configuration settings. There is a rough inheritance scheme, where it is possible to base a new board description file
on an existing one. There are also collections of custom procedures for common environments. For more information
on adding a new board config file, go to thdding A New Boardchapter.

An example board config file for a GNU simulator is as followst. board_info is a procedure that sets the field
name to the specified value. The procedures in square brdtletshelper proceduresThes are used to find parts

of a tool chain required to build an executable image that may reside in various locations. This is mostly of use for
when the startup code, the standard C lobraries, or the tool chain itself is part of your build tree.

Example 4-5. Board Config File

This is a list of toolchains that are supported on this board.
set_board_info target_install {sparc64-elf}

Load the generic configuration for this board. This will define any
routines needed by the tool to communicate with the board.
load_generic_config "sim"

We need this for find_gcc and *_include_flags/*_link_flags.
load_base_board_description "basic-sim"

Use long64 by default.
process_multilib_options "long64"

setup_sim sparc64

We only support newlib on this target. We assume that all multilib
options have been specified before we get here.

set_board_info compiler "[find_gcc]"

set_board_info cflags "[libgloss_include_flags] [newlib_include_flags]"
set_board_info Idflags "[libgloss_link_flags] [newlib_link_flags]"

No linker script.

set_board_info ldscript ";

Used by a few gcc.c-torture testcases to delimit how large the

stack can be.

set_board_info gcc,stack_size 16384

The simulator doesn’t return exit statuses and we need to indicate this
the standard GCC wrapper will work with this target.

31

Chapter 4. Customizing DejaGnu

set_board_info needs_status_wrapper 1
We can't pass arguments to programs.
set_board_info noargs 1

There are five helper procedures used in this example. The firstimheycc looks for a copy of the GNU
compiler in your build tree, or it uses the one in your path. This will also return the proper transformed name for a
cross compiler if you whole build tree is configured for one. The next helper procedures are

libgloss_include_flags & libgloss_link_flags . These return the proper flags to compiler and link an
executable image usirigbgloss the GNU BSP (Board Support Package). The final procedures are
newlib_include_flag & newlib_include_flag . These find the Newlib C library, which is a reentrant standard

C library for embedded systems comprising of non GPLd code.

4.4. Remote Host Testing

Note: Thanks to Dj Delorie for the original paper that this section is based on.

DejaGnu also supports running the tests on a remote host. To set this up, the remote host needs an ftp server, and a
telnet server. Currently foreign operating systems used as remote hosts are VxWorks, VRTX, Dos/Win3.1, MacOS,
and win95/win98/NT.

The recommended source for a win95/win98/NT based ftp server is to get 1IS (either IS 1 or Personal Web Server)
from http://www.microsoft.com. When you install it, make sure you install the FTP server - it's not selected by
default. Go into the 1IS manager and change the FTP server so that it does not allow anonymous ftp. Set the home
directory to the root directory (i.e. c:\) of a suitable drive. Allow writing via ftp.

It will create an account like IUSR_FOOBAR where foobar is the name of your machine. Go into the user editor and
give that account a password that you don’t mind hanging around in the clear (i.e. not the same as your admin or
personal passwords). Also, add it to all the various permission groups.

You'll also need a telnet server. For win95/win98/NT, go to the Ataman (http://ataman.com) web site, pick up the
Ataman Remote Logon Services for Windows, and install it. You can get started on the eval period anyway. Add
IUSR_FOOBAR to the list of allowed users, set the HOME directory to be the same as the FTP default directory.
Change the Mode prompt to simple.

Ok, now you need to pick a directory name to do all the testing in. For the sake of this example, we’ll call it piggy
(i.e. c:\piggy). Create this directory.

You'll need a unix machine. Create a directory for the scripts you'll need. For this example, we’'ll use
lusr/local/swamp/testing. You'll need to have a source tree somewhere, say /usr/src/devo. Now, copy some files from
releng’s area in SV to your machine:

32

Chapter 4. Customizing DejaGnu

Example 4-6. Remote host setup

cd /usr/local/swampl/testing

mkdir boards

scp darkstar.welcomehome.org:/dejagnu/cst/bin/MkTestDir .

scp darkstar.welcomehome.org:/dejagnul/site.exp .

scp darkstar.welcomehome.org:/dejagnu/boards/useless98r2.exp boards/foobar.exp
export DEJAGNU=/usr/local/swamp/testing/site.exp

You must edit the boards/foobar.exp file to reflect your machine; change the hostname (foobar.com), username
(iusr_foobar), password, and ftp_directory (c:/piggy) to match what you selected.

Edit the global site.exp to reflect your boards directory:

Example 4-7. Add The Board Directory
lappend boards_dir "/usr/local/swamp/testing/boards"
Now run MkTestDir, which is in the contrib directory. The first parameter is the toolchain prefix, the second is the

location of your devo tree. If you are testing a cross compiler (ex: you have sh-hms-gcc.exe in your PATH on the
PC), do something like this:

Example 4-8. Setup Cross Remote Testing

IMkTestDir sh-hms /usr/dejagnu/src/devo

If you are testing a native PC compiler (ex: you have gcc.exe in your PATH on the PC), do this:

Example 4-9. Setup Native Remote Testing

IMkTestDir " /usr/dejagnu/src/devo

To test the setugtp to your PC using the username (iusr_foobar) and password you selected. CD to the test
directory. Upload a file to the PC. Now telnet to your PC using the same username and password. CD to the test
directory. Make sure the file is there. Type "set" and/or "gcc -v" (or sh-hms-gcc -v) and make sure the default PATH
contains the installation you want to test.

Example 4-10. Run Test Remotely

cd /usr/local/swamp/testing
make -k -w check RUNTESTFLAGS="--host_board foobar --target _board foobar -v -v' > check.out 2>&1

To run a specific test, use a command like this (for this example, you'd run this from the gcc directory that
MkTestDir created):

33

Chapter 4. Customizing DejaGnu

Example 4-11. Run a Test Remotely

make check RUNTESTFLAGS="--host_board sloth --target_board sloth -v compile.exp=921202-1.c"

Note: if you are testing a cross-compiler, put in the correct target board. You'll also have to download more .exp files
and modify them for your local configuration. The -v’s are optional.

4.5. Config File Values

DejaGnu uses a named array in Tcl to hold all the info for each machine. In the case of a canadian cross, this means
host information as well as target information. The named array is called target_info, and it has two indices. The
following fields are part of the array.

4.5.1. Command Line Option Variables

In the user editable second section of Bersonal Config Filgou can not only override the configuration variables
captured in the first section, but also specify default values for all orutitest command line options. Save for
--debug , --help , and--version , each command line option has an associated Tcl variable. Use tetTcl
command to specify a new default value (as for the configuration variables). The following table describes the
correspondence between command line options and variables you casigegxp . Invoking Runtestfor
explanations of the command-line options.

Table 4-1. Tcl Variables For Command Line Options

runtest Tcl option variable descript

--all all_flag display all test results if set

--baud baud set the default baud rate to something
other than 9600.

--connect connectmode rlogin, telnet, rsh, kermit, tip, or
mondfe

--outdir outdir directory fotool.sum and
tool.log.

--objdir objdir directory for pre-compiled binaries

--reboot reboot reboot the target if set'id'’; do not
reboot if set td'0" (the default).

--srcdir srcdir directory of test subdirectories

--strace tracelevel a number: Tcl trace depth

--tool tool name of tool to test; identifies init, test
subdir

34

Chapter 4. Customizing DejaGnu

runtest Tcl option variable descript

--verbose verbose verbosity level. As option, use
multiple times; as variable, set a
number, O or greater.

--target target_triplet The canonical configuration string for
the target.

--host host_triplet The canonical configuration string for
the host.

--build build_triplet The canonical configuration string for
the build host.

--mail address Email the output log to the specified

address.

4.5.2. Personal Config File

The personal config file is used to customigatest’s behaviour for each person. It's typically used to set the user
prefered setting for verbosity, and any experimental Tcl procedures. My persategdgnurc file looks like:

Example 4-12. Personal Config File

set all_flag 1
set RLOGIN /usr/ucb/rlogin
set RSH /ust/local/sbin/ssh

Here | set all_flag so | see all the test cases that PASS along with the ones that FAIL. | also set RLOGIN to the BSD
version. | have Kerberos installed, and when | rlogin to a target board, it usually isn’t supported. So | use the non
secure version rather than the default that's in my path. | also set RSH to the SSH secure shell, as rsh is mostly used

to test unix machines within a local network here.

35

Chapter 5. Extending DejaGnu

5.1. Adding A New Test Suite

The testsuite for a new tool should always be located in that tools source directory. DejaGnu require the directory be
namedestsuite . Under this directory, the test cases go in a subdirectory whose name begins with the tool name.
For example, for a tool namdtlibber, each subdirectory containing testsuites must start \lithber.".

5.2. Adding A New Tool

In general, the best way to learn how to write (code or even prose) is to read something similar. This principle applies
to test cases and to test suites. Unfortunately, well-established test suites have a way of developing their own
conventions: as test writers become more experienced with DejaGnu and with Tcl, they accumulate more utilities,
and take advantage of more and more features of Expect and Tcl in general.

Inspecting such established test suites may make the prospect of creating an entirely new test suite appear
overwhelming. Nevertheless, it is quite straightforward to get a new test suite going.

There is one test suite that is guaranteed not to grow more elaborate over time: both it and the tool it tests were
created expressly to illustrate what it takes to get started with DejaGnwexih®le/ directory of the DejaGnu
distribution contains both an interactive tool caltsdc, and a test suite for it. Reading this test suite, and
experimenting with it, is a good way to supplement the information in this section. (Thanks to Robert Lupton for
creating calc and its test suite---and also the first version of this section of the manual!)

To help orient you further in this task, here is an outline of the steps to begin building a test suite for a program
example.

« Create or select a directory to contain your new collection of tests. Change into that directory (shown here as
testsuite):

Create aonfigure.in file in this directory, to control configuration-dependent choices for your tests. So far as
DejaGnu is concerned, the important thing is to set a value for the variable target_abbrev; this value is the link to
the init file you will write soon. (For simplicity, we assume the environment is Unix, andioseas the value.)

What else is needed tonfigure.in depends on the requirements of your tool, your intended test environments,
and which configure system you use. This example is a minimal configure.in for use with GNU Autoconf.

« CreateMakefile.in (if you are using Autoconf), oMakefile.am (if you are using Automake), the source file
used by configure to build younakefile . If you are using GNU Automake.just add the keywdeajagnuto the

36

Chapter 5. Extending DejaGnu

AUTOMAKE_OPTIONSariable in youMakefile.am file. This will add all the Makefile support needed to run
DejaGnu, and support thdake Checltarget.

You also need to include two targets important to DejaGheck to run the tests, arsite.expto set up the Tcl
copies of configuration-dependent values. This is called.tfoal Config FileThe check target must run the
runtest program to execute the tests.

Thesite.exp target should usually set up (among other things) the $tool variable for the name of your program.
If the local site.exp file is setup correctly, it is possible to execute the tests by merely typiegt on the
command line.

Example 5-1. Sample Makefile.in Fragment

Look for a local version of DejaGnu, otherwise use one in the path
RUNTEST = ‘if test -f $(top_srcdir)/../dejagnu/runtest; then \
echo $(top_srcdir) ../dejagnu/runtest; \
else \
echo runtest; \
fi"

The flags to pass to runtest
RUNTESTFLAGS =

Execute the tests
check: site.exp all
$(RUNTEST) $(RUNTESTFLAGS) \
--tool ${example} --srcdir $(srcdir)

Make the local config file
site.exp: ./config.status Makefile
@echo "Making a new config file..."
-@rm -f .ftmp?
@touch site.exp

-@mv site.exp site.bak
@echo "## these variables are automatically\

generated by make ##" > ./tmp0

@echo "# Do not edit here. If you wish to\

override these values" >> ./tmp0
@echo "# add them to the last section” >> ./tmp0
@echo "set host_os ${host_os}" >> ./tmp0
@echo "set host_alias ${host_alias}" >> ./tmp0
@echo "set host_cpu ${host_cpu}' >> ./tmp0
@echo "set host_vendor ${host_vendor}" >> ./tmp0O
@echo "set target_os ${target_os}' >> ./tmp0
@echo "set target_alias ${target_alias}" >> ./tmp0
@echo "set target_cpu ${target_cpu}" >> ./tmp0
@echo "set target_vendor ${target_vendor}" >> ./tmp0
@echo "set host_triplet ${host_canonical}" >> ./tmp0
@echo "set target_triplet ${target_canonical}">>./tmp0
@echo "set tool binutils* >> ./tmp0

37

Chapter 5. Extending DejaGnu

@echo "set srcdir ${srcdir}" >> ./tmp0
@echo "set objdir ‘pwd™ >> ./tmp0O
@echo "set ${examplename} ${example}" >> ./tmp0
@echo "## All variables above are generated by\
configure. Do Not Edit ##' >> ./tmp0
@cat ./tmp0O > site.exp
@sed < site.bak \
-e "1,/ All variables above are*##/ d' \
>> sjte.exp
-@rm -f Jtmp?

- Create a directory (irestsuite) calledconfig . Make aTool Init File in this directory. Its name must start with

the target_abbrev value, or be namiethult.exp so call itconfig/unix.exp for our Unix based example.
This is the file that contains the target-dependent procedures. Fortunately, on Unix, most of them do not have to do
very much in order foruntest to run.

If the program being tested is not interactive, you can get away with this minimedxp to begin with:

Example 5-2. Simple Batch Program Tool Init File

proc foo_exit {} {}
proc foo_version {} {}

If the program being tested is interactive, however, you might as well defitertaoutine and invoke it by using
an init file like this:

Example 5-3. Simple Interactive Program Tool Init File

proc foo_exit {} {}
proc foo_version {} {}

proc foo_start {} {
global ${examplename}
spawn ${examplename}
expect {
e "
}
}

Start the program running we want to test
foo_start

38

Chapter 5. Extending DejaGnu

- Create a directory whose name begins with your tool’'s name, to contain tests. For example, if your tool’'s name is
gcg then the directories all need to start witce.".

« Create a sample test file. Its name must end with . You can usdirst-try.exp . To begin with, just write
there a line of Tcl code to issue a message.

Example 5-4. Testing A New Tool Config

send_user "Testing: one, two...\n"

« Back in thetestsuite (top level) directory, rurtonfigure. Typically you do this while in the build directory. You
may have to specify more of a path, if a suitable configure is not available in your execution path.

- e now ready to triumphantly typmake checkor runtest. You should see something like this:

Example 5-5. Example Test Case Run

Test Run By rhl on Fri Jan 29 16:25:44 EST 1993
=== example tests ===

Running ./example.O/first-try.exp ...
Testing: one, two...

=== example Summary ===

There is no output in the summary, because so far the example does not call any of the procedures that establish a
test outcome.

- Write some real tests. For an interactive tool, you should probably write a real exit routine in fairly short order. In
any case, you should also write a real version routine soon.

5.3. Adding A New Target

DejaGnu has some additional requirements for target support, beyond the general-purpose provisions of configure.
DejaGnu must actively communicate with the target, rather than simply generating or managing code for the target
architecture. Therefore, each tool requires an initialization module for each target. For new targets, you must supply a
few Tcl procedures to adapt DejaGnu to the target. This permits DejaGnu itself to remain target independent.

Usually the best way to write a new initialization module is to edit an existing initialization module; some trial and
error will be required. If necessary, you can use the @samp{--debug} option to see what is really going on.

39

Chapter 5. Extending DejaGnu

When you code an initialization module, be generous in printing information controlled lgrtiese procedure.

For cross targets, most of the work is in getting the communications right. Communications code (for several
situations involving IP networks or serial lines) is available in a DejaGnu library file.

If you suspect a communication problem, try running the connection interactively from Expect. (There are three
ways of running Expect as an interactive interpreter. You can run Expect with no arguments, and control it
completely interactively; or you can usg&pect -itogether with other command-line options and arguments; or you
can run the commanidterpreter from any Expect procedure. Useturn to get back to the calling procedure (if
any), orreturn -tcl to make the calling procedure itself return to its caller; ewieor end-of-file to leave Expect
altogether.) Run the program whose name is recorded in $connectmode, with the arguments in $targetname, to
establish a connection. You should at least be able to get a prompt from any target that is physically connected.

5.4. Adding A New Board

Adding a new board consists of creating a new board config file. Examplesd#jagnu/baseboards . Usually to

make a new board file, it's easiest to copy an existing one. It is also possible to have your file be basasefoard

file with only one or two changes needed. Typically, this can be as simple as just changing the linker script. Once the
new baseboard file is done, add it to the boards_DATA list indtij@gnu/baseboards/Makefile.am ,and

regenerate the Makefile.in using automake. Then just rebuild and install DejaGnu. You can test it by:

There is a crude inheritance scheme going on with board files, so you can include one board file into another, The
two main procedures used to do this &rsd_generic_config andload_base_board_description . The

generic config file contains other procedures used for a certain class of target. The board description file is where the
board specfic settings go. Commonly there are similar target environments with just different processors.

Example 5-6. Testing a New Board Config File

make check RUNTESTFLAGS="--target_board= newboardfile "

Here’s an example of a board config file. There are sev@igler proceduressed in this example. A helper

procedure is one that look for a tool of files in commonly installed locations. These are mostly used when testing in
the build tree, because the executables to be tested are in the same tree as the new dejagnu files. The helper
procedures are the ones in square brficeshich is the Tcl execution characters.

Example 5-7. Example Board Config File
Load the generic configuration for this board. This will define a basic
set of routines needed by the tool to communicate with the board.

load_generic_config "sim"

basic-sim.exp is a basic description for the standard Cygnus simulator.
load_base_board_description "basic-sim"

40

Chapter 5. Extending DejaGnu

The compiler used to build for this board. This has *nothing* to do
with what compiler is tested if we're testing gcc.
set_board_info compiler "[find_gcc]"

We only support newlib on this target.
However, we include libgloss so we can find the linker scripts.
set_board_info cflags "[newlib_include_flags] [libgloss_include_flags]"
set_board_info Idflags "[newlib_link_flags]"

No linker script for this board.
set_board_info Idscript "-Tsim.ld";

The simulator doesn’t return exit statuses and we need to indicate this.
set_board_info needs_status_wrapper 1

Can’t pass arguments to this target.
set_board_info noargs 1

No signals.
set_board_info gdb,nosignals 1

And it can’t call functions.
set_board_info gdb,cannot_call_functions 1

5.5. Board Config File Values

These fields are all in the board_info These are all set by usinggthieoard_info procedure. The parameters are
the field name, followed by the value to set the field to.

Table 5-1. Common Board Info Fields

Field Sample Value Description

compiler "[find_gcc]" The path to the compiler to use.

cflags "-mca" Compilation flags for the compiler.

Idflags "[libgloss_link_flags] Linking flags for the compiler.

[newlib_link_flags]"

Idscript "-WI,-Tidt.ld" The linker script to use when cross
compiling.

libs "-lgcc” Any additional libraries to link in.

shell_prompt "cygmon>" The command prompt of the remaote
shell.

hex_startaddr "0xa0020000" The Starting address as a string.

41

Chapter 5. Extending DejaGnu

Field Sample Value Description

start_addr 0xa0008000 The starting address as a value.

startaddr "a0020000"

exit_statuses_bad 1 Whether there is an accurate exit
status.

reboot_delay 10 The delay between power off and
power on.

unreliable 1 Whether communication with the
board is unreliable.

sim [find_sim] The path to the simulator to use.

objcopy $tempfil The path to thebjcopy program.

support_libs "${prefix_dir}/i386-coff/" Support libraries needed for cross
compiling.

addl_link_flags "-N" Additional link flags, rarely used.

These fields are used by the GCC and GDB tests, and are mostly only useful to somewhat trying to debug a new

board file for one of these tools. Many of these are used only by a few testcases, and their purpose is esoteric. These

are listed with sample values as a guide to better guessing if you need to change any of these.

Table 5-2. Board Info Fields For GCC & GDB

Field Sample Value Description

strip $tempfile Strip the executable of symbols.
gdb_load_offset "0x40050000"

gdb_protocol "remote” The GDB debugging protocol to use.
gdb_sect offset "0x41000000";

gdb_stub_Idscript

"-WI,-Teva-stub.Ild"

The linker script to use with a GD
stub.

gdb_init_command

"set mipsfpu none"

gdb,cannot_call_functions

1

Whether GDB can call functions ¢
the target,

N

gdb,noargs 1 Whether the target can take command
line arguments.

gdb,nosignals 1 Whether there are signals on the
target.

gdb,short_int 1

gdb,start_symbol "_start"; The starting symbol in the executable.

gdb,target_sim_options "-sparclite” Special options to pass to the

simulator.

42

Chapter 5. Extending DejaGnu

Field

Sample Value

Description

gdb,timeout

540

Timeout value to use for remote
communication.

gdb_init_command

"print/x \$fsr = Ox0"

gdb_load_offset "0x12020000"

gdb_opts "--command gdbinit"

gdb_prompt "\\(gdb960\\)" The prompt GDB is using.

gdb_run_command "jump start"

gdb_stub_offset "0x12010000"

use_gdb_stub 1 Whether to use a GDB stub.

use_vma_offset 1

wrap_m68k_aout 1

gcc,no_label_values 1

gcc,no_trampolines 1

gcc,no_varargs 1

gcc,stack_size 16384 Stack size to use with some GC(C
testcases.

ieee_multilib_flags "-mieee";

is_simulator 1

needs_status_wrapper 1

no_double 1

no_long_long 1

noargs 1

nullstone,lib "mips-clock.c”

nullstone,ticks_per_sec 3782018

sys_speed_value 200

target_install {sh-hms}

5.6. Writing A Test Case

The easiest way to prepare a new test case is to base it on an existing one for a similar situation. There are two major

categories of tests: batch or interactive. Batch oriented tests are usually easier to write.

The GCC tests are a good example of batch oriented tests. All GCC tests consist primarily of a call to a single

common procedure, Since all the tests either have no output, or only have a few warning messages when successfully
compiled. Any non-warning output is a test failure. All the C code needed is kept in the test directory. The test driver,

written in Tcl, need only get a listing of all the C files in the directory, and compile them all using a generic
procedure. This procedure and a few others supporting for these tests are kept in the library module

43

Chapter 5. Extending DejaGnu

lib/c-torture.exp in the GCC test suite. Most tests of this kind use very few expect features, and are coded
almost purely in Tcl.

Writing the complete suite of C tests, then, consisted of these steps:

- Copying all the C code into the test directory. These tests were based on the C-torture test created by Torbjorn
Granlund (on behalf of the Free Software Foundation) for GCC development.

« Writing (and debugging) the generic Tcl procedures for compilation.

« Writing the simple test driver: its main task is to search the directory (using the Tcl proggdbrer filename
expansion with wildcards) and call a Tcl procedure with each filename. It also checks for a few errors from the
testing procedure.

Testing interactive programs is intrinsically more complex. Tests for most interactive programs require some trial and
error before they are complete.

However, some interactive programs can be tested in a simple fashion reminiscent of batch tests. For example, prior
to the creation of DejaGnu, the GDB distribution already included a wide-ranging testing procedure. This procedure
was very robust, and had already undergone much more debugging and error checking than many recent DejaGnu
test cases. Accordingly, the best approach was simply to encapsulate the existing GDB tests, for reporting purposes.
Thereafter, new GDB tests built up a family of Tcl procedures specialized for GDB testing.

5.7. Debugging A Test Case

These are the kinds of debugging information available from DejaGnu:

- Output controlled by test scripts themselves, explicitly allowed for by the test author. This kind of debugging
output appears in the detailed output recorded in the DejaGnu log file. To do the same for new tests, use the
verboseprocedure (which in turn uses the variable also caliedbosé to control how much output to generate.
This will make it easier for other people running the test to debug it if necessary. Whenever possidegydsas
0, there should be no output other than the output fpass fail, error, andwarning Then, to whatever extent is
appropriate for the particular test, allow successively higher valugsesbosdo generate more information. Be
kind to other programmers who use your tests: provide for a lot of debugging information.

« Output from the internal debugging functions of Tcl and Expect. There is a command line options for each; both
forms of debugging output are recorded in thedibg.log in the current directory.

Use--debug for information from the expect level; it generates displays of the expect attempts to match the tool
output with the patterns specified. This output can be very helpful while developing test scripts, since it shows
precisely the characters received. Iterating between the latest attempt at a new test script and the corresponding
dbg.log can allow you to create the final patterns by “cut and paste”. This is sometimes the best way to write a
test case.

« Use--strace to see more detail at the Tcl level; this shows how Tcl procedure definitions expand, as they
execute. The associated number controls the depth of definitions expanded.

44

Chapter 5. Extending DejaGnu

- Finally, if the value ofverboseis 3 or greater,DejaGnu turns on the expect commagduser. This command
prints all expect actions to the expect standard output, to the detailed log file, axdl{ify is on) todbg.log

5.8. Adding A Test Case To A Test Suite.

There are two slightly different ways to add a test case. One is to add the test case to an existing directory. The other
is to create a new directory to hold your test. The existing test directories represent several styles of testing, all of
which are slightly different; examine the directories for the tool of interest to see which (if any) is most suitable.

Adding a GCC test can be very simple: just add the C code to any directory beginningcwitand it runs on the
next

runtest --tool
gcc

To add a test to GDB, first add any source code you will need to the test directory. Then you can either create a new
expect file, or add your test to an existing one (any file witexgsuffix). Creating a new .exp file is probably a

better idea if the test is significantly different from existing tests. Adding it as a separate file also makes upgrading
easier. If the C code has to be already compiled before the test will run, then you'll have to add it to the

Makefile.in file for that test directory, then ruronfigure andmake.

Adding a test by creating a new directory is very similar:

- Create the new directory. All subdirectory names begin with the name of the tool to test; e.g. G++ tests might be in
a directory called)++.other . There can be multiple test directories that start with the same tool name (such as
g++).

+ Add the new directory name to the configdirs definition in¢hefigure.in file for the test suite directory. This
way whenmake andconfigure next run, they include the new directory.

- Add the new test case to the directory, as above.

- To add support in the new directory for configure and make, you must also crgatefie.in and a
configure.in

5.9. Hints On Writing A Test Case

It is safest to write patterns that match all the output generated by the tested program; this is called closure. If a
pattern does not match the entire output, any output that remains will be examined by thrgemttommand. In

this situation, the precise boundary that determines winglectcommand sees what is very sensitive to timing

between the Expect task and the task running the tested tool. As a result, the test may sometimes appear to work, but
is likely to have unpredictable results. (This problem is particularly likely for interactive tools, but can also affect

45

Chapter 5. Extending DejaGnu

batch tools---especially for tests that take a long time to finish.) The best way to ensure closure is torase the
option for theexpectcommand to write the pattern as a full regular expressions; then you can match the end of
output using &. It is also a good idea to write patterns that match all available output by uSiager the text of
interest; this will also match any intervening blank lines. Sometimes an alternative is to match end of line asing
\n, but this is usually too dependent on terminal settings.

Always escape punctuation, such(as ", in your patterns; for example, writé If you forget to escape punctuation,
you will usually see an error message like

extra
characters after close-quote.

If you have trouble understanding why a pattern does not match the program output, try usidgiting option to
runtest, and examine the debug log carefully.

Be careful not to neglect output generated by setup rather than by the interesting parts of a test case. For example,
while testing GDB, | issue a sersgt height O\ltommand. The purpose is simply to make sure GDB never calls a
paging program. Theet heightommand in GDB does not generate any output; but running any command makes
GDB issue a newgdb) prompt. If there were nexpectcommand to match this prompt, the outfgdb) begins the

text seen by the nextxpectcommand---which might make that pattern fail to match.

To preserve basic sanity, | also recommended that no test ever pass if there was any kind of problem in the test case.
To take an extreme case, tests that pass even when the tool will not spawn are misleading. Ideally, a test in this sort of
situation should not fail either. Instead, print an error message by calling one of the DejaGnu proegdures

warning.

5.10. Special variables used by test cases.

There are special variables used by test cases. These contain other information from DejaGnu. Your test cases can
use these variables, with conventional meanings (as well as the variables ssitedxp . You can use the value
of these variables, but they should never be changed.

$prms_id

The tracking system (e.g. GNATS) number identifying a corresponding bugre@afty¢u do not specify itin
the test script.)

$item bug_id

An optional bug id; may reflect a bug identification from another organizatfbifiypu do not specify it.)

$subdir

The subdirectory for the current test case.

46

Chapter 5. Extending DejaGnu

$expect_out(buffer)
The output from the last command. This is an internal variable set by Expect. More information can be found in
the Expect manual.
$exec_output
This is the output from &{tool} load command. This only applies to tools like GCC and GAS which
produce an object file that must in turn be executed to complete a test.
$comp_output

This is the output from &{tool}_start command. This is conventionally used for batch oriented programs,
like GCC and GAS, that may produce interesting output (warnings, errors) without further interaction.

47

Chapter 6. Unit Testing

6.1. What Is Unit Testing ?

Most regression testing as done by DejaGnu is system testing. This is the complete application is tested all at once.
Unit testing is for testing single files, or small libraries. In this case, each file is linked with a test case in C or C++,
and each function or class and method is tested in series, with the test case having to check private data or global
variables to see if the function or method worked.

This works particularly well for testing APIs and at level where it is easier to debug them, than by needing to trace
through the entire appication. Also if there is a specification for the API to be tested, the testcase can also function as
a compliance test.

6.2. The dejagnu.h Header File

DejaGnu uses a single header file to assist in unit testing. As this file also produces it's one test state output, it can be
run standalone, which is very useful for testing on embedded systems. This header file has a C and C++ API for the
test states, with simple totals, and standardized output. Because the output has been standardized, DejaGnu can be
made to work with this test case, without writing almost any Tcl. The library module, dejagnu.exp, will look for the
output messages, and then merge them into DejaGnu'’s.

48

Chapter 7. Reference

7.1. Obtaining DejaGnu

You can obtain DejaGnu from the DejaGnu web site at the Free Software Foundation (http://www.gnu.org), which is
at www.gnu.org/software/dejagnu/ (http://www.gnu.org/software/dejagnu/)

7.2. Installation

Once you have the DejaGnu source unpacked and available, you must first configure the software to specify where it
is to run (and the associated defaults); then you can proceed to installing it.

7.2.1. Configuring DejaGnu

It is usually best to configure in a directory separate from the source tree, specifying where to find the source with the
optional--srcdir option toconfigure DejaGnu uses the GNautoconfto configure itself. For more info on using

autoconf, read the GNU autoconf manual. To configure, executstifigure program, no other options are

required. For an example, to configure in a seperate tree for objects, execute the configure script from the source tree
like this:

../dejagnu-1.4.3/configure

DejaGnu doesn't care at config time if it’s for testing a native system or a cross system. That is determined at runtime
by using the config files.

You may also want to use tlonfigure option--prefixto specify where you want DejaGnu and its supporting code
installed. By default, installation is in subdirectoriedwr/local , but you can select any alternate directory altdir
by including--prefix ~ {altdir}} on the configure command line. (This value is captured in the Makefile variables
prefixandexe@refix}.)

Save for a small number of example tests, the DejaGnu distribution itself does not include any test suites; these are
available separately. Test suites for the GNU development tools are included in those releases. After configuring the
top-level DejaGnu directory, unpack and configure the test directories for the tools you want to test; then, in each test
directory, runmake checko build auxiliary programs required by some of the tests, and run the test suites.

49

Chapter 7. Reference

7.2.2. Installing DejaGnu

To install DejaGnu in your filesystem (either/imsr/local , or as specified by yourprefixoption toconfigure),
execute.

eg$ make install

make instalfioes thes things for DejaGnu:

Look in the path specified for executables $exec_prefix) for directories dialleedndbin . If these directories do
not exist,make instalcreates them.

Create another directory in teare directory, calleddejagnu , and copy all the library files into it.
Create a directory in theejagnu/share directory, callectonfig , and copy all the configuration files into it.
Copy theruntestshell script intasexec_prefix/bin

Copyruntest.exp into $exec_prefix/lib/dejagnu . This is the main Tcl code implementing DejaGnu.

7.3. Builtin Procedures

DejaGnu provides these Tcl procedures.

7.3.1. Core Internal Procedures

7.3.1.1. Mail_file Procedure

mail_file (file to subject);

7.3.1.2. Open_logs Procedure

open_logs ();

50

Chapter 7. Reference

7.3.1.3. Close_logs Procedure

close_logs ();

7.3.1.4. Isbuild Procedure

Tests for a particular build host environment. If the currently configured host matches the argument string, the result
is 1; otherwise the result i8. hostmust be a full three-part configure host name; in particular, you may not use the
shorter nicknames supported by configure (but you can use wildcard characters, using shell syntax, to specify sets of
names). If it is passed a NULL string, then it returns the name of the build canonical configuration.

isbuild (pattern);

pattern

7.3.1.5. Is_remote Procedure

is_remote (board);

7.3.1.6. is3way Procedure

Tests for a canadian cross. This is when the tests will be run on a remotly hosted cross compiler. If it is a canadian
cross, then the result Is otherwise the result i8.

is3way ();

51

Chapter 7. Reference

7.3.1.7. Ishost Procedure

Tests for a particular host environment. If the currently configured host matches the argument string, thelresult is
otherwise the result i8. hostmust be a full three-part configure host name; in particular, you may not use the shorter
nicknames supported by configure (but you can use wildcard characters, using shell syntax, to specify sets of names).

ishost (pattern);

7.3.1.8. Istarget Procedure

Tests for a particular target environment. If the currently configured target matches the argument string, thetresult is

; otherwise the result i8. target must be a full three-part configure target name; in particular, you may not use the
shorter nicknames supported by configure (but you can use wildcard characters, using shell syntax, to specify sets of
names). If it is passedMULL string, then it returns the name of the build canonical configuration.

istarget (args);

7.3.1.9. Isnative Procedure

Tests whether the current configuration has the same host and target. When it runs in a native configuration this
procedure returns & otherwise it returns .

isnative ();

7.3.1.10. Unknown Procedure

unknown (args);

52

args

7.3.1.11. Clone_output Procedure

clone_output (message);

message

7.3.1.12. Reset_vars Procedure

reset_vars ();

7.3.1.13. Log_and_exit Procedure

log_and_exit ();

7.3.1.14. Log_summary Procedure

log_summary (args);

args

7.3.1.15. Cleanup Procedure

cleanup ();

Chapter 7. Reference

53

Chapter 7. Reference

7.3.1.16. Setup_xfail Procedure

Declares that the test is expected to fail on a particular set of configurations. The config argument must be a list of
full three-part configure target name; in particular, you may not use the shorter nicknames supported by configure
(but you can use the common shell wildcard characters to specify sets of namejigid@rgument is optional,

and used only in the logging file output; use it as a link to a bug-tracking system such as GNATS.

Once you useetup_xfail , thefail andpass procedures produce the messagBAIL andXPASSespectively,
allowing you to distinguish expected failures (and unexpected success!) from other test outcomes.

Warning

Warning you must clear the expected failure after using setup_xfail in a test case. Any call to pass or fail |
clears the expected failure implicitly; if the test has some other outcome, e.g. an error, you can call
clear_xfail to clear the expected failure explicitly. Otherwise, the expected-failure declaration applies to
whatever test runs next, leading to surprising results.

setup_xfail (config bugid);

config

The config triplet to trigger whether this is an unexpected or expect failure.

bugid

The optional bugid, used to tie it this test case to a bug tracking system.

7.3.1.17. Record_test Procedure

record_test (type message args);

type

message

54

Chapter 7. Reference

args

7.3.1.18. Pass Procedure

Declares a test to have passpaks writes in the log files a message beginning withSSor XPASSIf failure was
expected), appending the argumetning

pass (string);

string

The string to use for this PASS message.

7.3.1.19. Fail Procedure

Declares a test to have failedil writes in the log files a message beginning WR&IL (or XFAIL, if failure was
expected), appending the argumstning

fail (string);

string

The string to use for this FAIL message.

7.3.1.20. Xpass Procedure

Declares a test to have unexpectably passed, when it was expected to be axfailsrewrites in the log files a
message beginning witkPASSor XFAIL, if failure was expected), appending the argunsrng

xpass (string);

string

The string to use for this output state.

55

Chapter 7. Reference

7.3.1.21. Xfail Procedure

Declares a test to have expectably failefdil writes in the log files a message beginning WiRAIL (or PASS if
success was expected), appending the argusteng

xpass (string);

string

The string to use for this output state.

7.3.1.22. Set_warning_threshold Procedure

Sets the value of warning_threshold. A valuéafisables it: calls tevarning will not turn aPASSor FAIL into an
UNRESOLVED

set_warning_threshold (threshold);

threshold

This is the value of the new warning threshold.

7.3.1.23. Get_warning_threshold Procedure

Returns the current value of {warning_threshold. The default value is 3. This value controls howanaing
procedures can be called before becomit{RESOLVED

get_warning_threshold 0;

7.3.1.24. Warning Procedure

Declares detection of a minor error in the test case itaalning writes in the log files a message beginning with
WARNING appending the argumesiring . Usewarning rather tharperror for cases (such as communication
failure to be followed by a retry) where the test case can recover from the error. If the optimnbér is supplied,
then this is used to set the internal count of warnings to that value.

As a side effect, warning_threshold or more calls to warning in a single test case also changes the effect of the next
pass orfail command: the test outcome becomB$RESOLVED®ince an automatieASSor FAIL may not be

56

Chapter 7. Reference

trustworthy after many warnings. If the optional numeric valu@, ifien there are no further side effects to calling
this function, and the following test outcome doesn’t bectRESOLVEDThis can be used for errors with no
known side effects.

warning (string number);

string

number

The optional number to set the error counter. Thius is only used to fake out the counter when usfaig the
procedure to control when it flips the output ovettNRESOLVEDstate.

7.3.1.25. Perror Procedure

Declares a severe error in the testing framework itpelfor writes in the log files a message beginning with
ERRORappending the argumesitring

As a side effect, perror also changes the effect of the et orfal command: the test outcome becomes
UNRESOLVEDsince an automatieASSor FAIL cannot be trusted after a severe error in the test framework. If the
optional numeric value i8, then there are no further side effects to calling this function, and the following test
outcome doesn’t becom¢NRESOLVEDThis can be used for errors with no known side effects.

perror (string number);

string

number

The optional number to set the error counter. Thius is only used to fake out the counter when usigig the
procedure to control when it flips the output ovettNRESOLVEDstate.

7.3.1.26. Note Procedure

Appends an informational message to the log fitee writes in the log files a message beginning WilOTE
appending the argumestring . Usenote sparingly. Theverbose should be used for most such messages, but in
cases where a message is needed in the log file regardless of the verbosity lewed use

note (string);

57

Chapter 7. Reference

string

The string to use for this note.

7.3.1.27. Untested Procedure

Declares a test was not rumtested writes in the log file a message beginning WitNTESTED appending the
argumenstring. For example, you might use this in a dummy test whose only role is to record that a test does not yet
exist for some feature.

untested (string);

string

The string to use for this output state.

7.3.1.28. Unresolved Procedure

Declares a test to have an unresolved outcamesolved writes in the log file a message beginning with
UNRESOLVEDappending the argumesitring. This usually means the test did not execute as expected, and a
human being must go over results to determine if it passed or failed (and to improve the test case).

unresolved (string);

string

The string to use for this output state.

7.3.1.29. Unsupported Procedure

Declares that a test case depends on some facility that does not exist in the testing envinomugsirted
writes in the log file a message beginning WithiSUPPORTEDappending the argument string.

unsupported (string);

58

string

The string to use for this output state.

7.3.1.30. Init_testcounts Procedure

init_testcounts 0;

7.3.1.31. Incr_count Procedure

incr_count (name args);

name

args

7.3.1.32. transform Procedure

Generates a string for the name of a tool as it was configured and installed, given its native name (as the argument
toolname). This makes the assumption that all tools are installed using the same naming conventions: For example,

Chapter 7. Reference

for a cross compiler supporting the68k-vxworkgonfiguration, the result of transforgtcis m68k-vxworks-gcc

transform (toolname);

toolname

The name of the cross-development program to transform.

7.3.1.33. Check_conditional_xfail Procedure

This procedure adds a condition xfail, based on compiler options used to create a test case executable. If an include

options is found in the compiler flags, and it's the right architecture, it'll triggeXBAlL. Otherwise it'll produce an

59

Chapter 7. Reference

ordinaryFAIL. You can also specify flags to exclude. This makes a resulti#dla even if the included options are
found. To set the conditional, set the variable compiler_conditional_xfail_data to the fields

"[message string] [targets list] [includes
list] [excludes list]"

(descriptions below). This is the checked at pass/fail decision time, so there is no need to call the procedure yourself,
unless you wish to know if it gets triggered. After a pass/fail, the variable is reset, so it doesn’t effect other tests. It
returnsl if the conditional is true, o0 if the conditional is false.

check_conditional_xfail (message targets includes excludes);

message

This is the message to print with the normal test result.

targets

This is a string with the list targets to activate this conditional on.

includes

This is a list of sets of options to search for in the compiler options to activate this conditional. If any set of the
options matches, then this conditional is true.

excludes

This is a list of sets of options to search for in the compiler options to activate this conditional. If any set of the
options matches, (regardless of whether any of the include sets match) then this conditional is de-activated.

Example 7-1. Specifying the conditional xfail data

set compiler_conditional_xfail_data { \
"I sure wish | knew why this was hosed" \
"sparc*-sun*-* *-pc-*-*" \
{"-wall -v" "-03"} \
{"-01" "-Map"} \

What this does is it matches only for these two targets if "-Wall -v" or "-O3" is set, but neither "-O1" or "-Map" is set.
For a set to match, the options specified are searched for independantly of each other, so a "-Wall -v" matches either
"-Wall -v" or "-v -Wall". A space seperates the options in the string. Glob-style regular expressions are also permitted.

7.3.1.34. Clear_xfail Procedure

Cancel an expected failure (previously declared wétup_xfail) for a particular set of configurations. Thenfig
argument is a list of configuration target names. It is only necessary toleail xfail if a test case ends without
calling eitherpassor fail, after callingsetup_xfail.

60

Chapter 7. Reference

clear_xfail (config);

config

The configuration triplets to clear.

7.3.1.35. Verbose Procedure

Test cases can use this function to issue helpful messages depending on the numédosé options on the
runtest command line. It prints string if the value of the variable verbose is higher than or equal to the optional
number. The default value for numberlisUse the optionalog argument to cause string to always be added to the
log file, even if it won't be printed. Use the optional argument to log the test results into a parsable XML file. Use
the optionatn argument to print string without a trailing newline. Use the optienahrgument if string begins with

verbose (-log -x -n -r string number);

string

number

7.3.1.36. Load_lib Procedure

Loads a DejaGnu library file by searching a fixed path built into DejaGnu. If DejaGnu has been installed, it looks in a
path starting with the installed library directory. If you are running DejaGnu directly from a source directory, without
first runningmake install, this path defaults to the current directory. In either case, it then looks in the current

61

Chapter 7. Reference

directory for a directory calletib . If there are duplicate definitions, the last one loaded takes precedence over the
earlier ones.

load_lib (filespec);

filespec

The name of the DejaGnu library file to load.

7.3.2. Procedures For Remote Communication

lib/remote.exp defines these functions, for establishing and managing communications. Each of these procedures
tries to establish the connection up to three times before returning. Warnings (if retries will continue) or errors (if the
attempt is abandoned) report on communication failures. The result for any of these procedures-ik eitie the
connection cannot be established, or the spawn ID returned by the Expect cospaamd

It use the value of the connect field in the target_info array (was connectmode as the type of connection to make.
Current supported connection types are tip, kermit, telnet, rsh, rlogin, and netdata-iétthet option was used
on the runtest command line, then the target is rebooted before the connection is made.

7.3.2.1. Call_remote Procedure

call_remote (type proc dest args);

proc

dest

args

7.3.2.2. Check _for_board_status Procedure

check_for_board_status (variable);

62

variable

7.3.2.3. File_on_build Procedure

file_on_build (op file args);

op

file

args

7.3.2.4. File_on_host Procedure

file_on_host (op file args);

op

file

args

7.3.2.5. Local_exec Procedure

local_exec (commandline inp outp timeout

Chapter 7. Reference

63

Chapter 7. Reference

inp

outp

timeout

7.3.2.6. Remote_binary Procedure

remote_binary (host);

host

7.3.2.7. Remote_close Procedure

remote_close (shellid);

shellid

This is the value returned by a calltemote_open . This closes the connection to the target so resources can
be used by others. This parameter can be left off if the fileid field in the target_info array is set.

7.3.2.8. Remote_download Procedure

remote_download (dest file args);

dest

64

Chapter 7. Reference

file

args

7.3.2.9. Remote_exec Procedure

remote_exec (‘hosthame program args);

hostname

program

args

7.3.2.10. Remote_expect Procedure

remote_expect (board timeout args);

board

timeout

args

7.3.2.11. Remote_file Procedure

remote_file (dest args);

65

dest

args

7.3.2.12. Remote_Id Procedure

remote_Id (dest prog);

dest

prog

7.3.2.13. Remote_load Procedure

remote_load (dest prog args);

dest

prog

args

7.3.2.14. Remote_open Procedure

remote_open (type);

Chapter 7. Reference

66

Chapter 7. Reference

type

This is passetlost ortarget . Host or target refers to whether it is a connection to a remote target, or a remote
host. This opens the connection to the desired target or host using the default values in the configuration system.
It returns that spawn_id of the process that manages the connection. This value can be used in Expect or
exp_sendstatements, or passed to other procedures that need the connection process’s id. This also sets the
fileid field in the target_info array.

7.3.2.15. Remote_pop_conn Procedure

remote_pop_conn (host);

host

7.3.2.16. Remote_push_conn Procedure

remote_push_conn (host);

host

7.3.2.17. Remote_raw_binary Procedure

remote_raw_binary (host);

host

67

7.3.2.18. Remote_raw_close Procedure

remote_raw_close (host);

host

7.3.2.19. Remote_raw_file Procedure

remote_raw_file (dest args);

dest

args

7.3.2.20. remote_raw_Id Procedure

remote_raw_Id (dest prog);

dest

prog

7.3.2.21. Remote_raw_load Procedure

remote_raw_load (dest prog args);

Chapter 7. Reference

68

dest

prog

args

7.3.2.22. Remote_raw_open Procedure

remote_raw_open (args);

args

7.3.2.23. Remote_raw_send Procedure

remote_raw_send (dest string);

dest

string

7.3.2.24. Remote_raw_spawn Procedure

remote_raw_spawn (dest commandline);

dest

Chapter 7. Reference

69

commandline

7.3.2.25. Remote_raw_transmit Procedure

remote_raw_transmit (dest file),

dest

file

7.3.2.26. Remote_raw_wait Procedure

remote_raw_wait (dest timeout);

dest

timeout

7.3.2.27. Remote_reboot Procedure

remote_reboot (host);

host

Chapter 7. Reference

70

7.3.2.28. Remote_send Procedure

remote_send (dest string);

dest

string

7.3.2.29. Remote_spawn Procedure

remote_spawn (dest commandline args);

dest

commandline

args

7.3.2.30. Remote_swap_conn Procedure

remote_swap_conn (host);

7.3.2.31. Remote_transmit Procedure

remote_transmit (dest file);

Chapter 7. Reference

71

Chapter 7. Reference

dest

file

7.3.2.32. Remote_upload Procedure

remote_upload (dest srcfile arg);

dest

srcfile

arg

7.3.2.33. Remote_wait Procedure

remote_wait (dest timeout);

dest

timeout

7.3.2.34. Standard_close Procedure

standard_close (‘host);

72

Chapter 7. Reference

host

7.3.2.35. Standard_download Procedure

standard_download (dest file destfile);

dest

file

destfile

7.3.2.36. Standard_exec Procedure

standard_exec (hostname args);

hostname

args

7.3.2.37. Standard_file Procedure

standard_file (dest , op, args);

73

7.3.2.38. Standard_load Procedure

standard_load (dest prog args);

dest

prog

args

7.3.2.39. Standard_reboot Procedure

standard_reboot (host);

host

7.3.2.40. Standard_send Procedure

standard_send (dest string);

dest

string

Chapter 7. Reference

74

Chapter 7. Reference

7.3.2.41. Standard_spawn Procedure

standard_spawn (dest commandline);

dest

commndline

7.3.2.42. Standard_transmit Procedure

standard_transmit (dest file),

dest

file

7.3.2.43. Standard_upload Procedure

standard_upload (dest srcfile destfile);

dest

srcfile

destfile

75

7.3.2.44. Standard_wait Procedure

standard_wait (dest timeout);

dest

timeout

7.3.2.45. Unix_clean_filename Procedure

unix_clean_filename (dest file),

dest

file

7.3.3. Procedures For Using Utilities to Connect

telnet, rsh, tip, kermit

7.3.3.1. telnet Procedure

telnet (hostname port);

rlogin (‘hostname);

Chapter 7. Reference

76

Chapter 7. Reference

7.3.3.2. rsh Procedure

rsh (‘hostname);

hostname

This refers to the IP address or name (for example, an enteydihosts) for this target. The procedure
names reflect the Unix utility used to establish a connection. The optangl is used to specify the IP port
number. The value of theetport field in the target_info array is used. (was $netport) This value has two
parts, the hostname and the port number, seperated.bf/lest or target is used in the hostname field, than the
config array is used for all information.

7.3.3.3. Tip Procedure

tip (port);

port

Connect using the Unix utilityip. Port must be a name from the tip configuration fidéc/remote . Often,

this is called hardwire, or something like ttya. This file holds all the configuration data for the serial port. The
value of the serial field in the target_info array is used. (was $serialpd}if or target is used in theort

field, than the config array is used for all information. the config array is used for all information.

7.3.3.4. Kermit Procedure

kermit (port bps);

port

Connect using the prograkermit. Port is the device name, e.@levittyb

bps

bps is the line speed to use (in its per second) for the connection. The value of the serial field in the target_info
array is used. (was $serialport)hdst ortarget is used inthgort field, than the config array is used for all
information. the config array is used for all information.

77

7.3.3.5. kermit_open Procedure

kermit_open (dest args);

dest

args

7.3.3.6. Kermit_command Procedure

kermit_command (dest args);

dest

args

7.3.3.7. Kermit_send Procedure

kermit_send (dest string args);

dest

string

args

Chapter 7. Reference

78

7.3.3.8. Kermit_transmit Procedure

kermit_transmit (dest file args);

dest

file

args

7.3.3.9. Telnet_open Procedure

telnet_open (hostname args);

hostname

args

7.3.3.10. Telnet_binary Procedure

telnet_binary (‘hostname);

hostname

Chapter 7. Reference

79

7.3.3.11. Telnet_transmit Procedure

telnet_transmit (dest file args);

dest

file

args

7.3.3.12. Tip_open Procedure

tip_open (hostname);

hostname

7.3.3.13. Rlogin_open Procedure

rlogin_open (arg);

arg

7.3.3.14. Rlogin_spawn Procedure

rlogin_spawn (dest cmdline);

Chapter 7. Reference

80

dest

cmdline

7.3.3.15. Rsh_open Procedure

rsh_open (hostname);

hostname

7.3.3.16. Rsh_download Procedure

rsh_download (desthost srcfile destfile);

desthost

srcfile

destfile

7.3.3.17. Rsh_upload Procedure

rsh_upload (desthost srcfile destfile);

desthost

Chapter 7. Reference

81

srcfile

destfile

7.3.3.18. Rsh_exec Procedure

rsh_exec (boardname cmd args);

boardname

cmd

args

7.3.3.19. Ftp_open Procedure

ftp_open (host);

host

7.3.3.20. Ftp_upload Procedure

ftp_upload (host remotefile localfile

host

Chapter 7. Reference

82

remotefile

localfile

7.3.3.21. Ftp_download Procedure

ftp_download (host localfile remotefile

host

localfile

remotefile

7.3.3.22. Ftp_close Procedure

ftp_close (‘host);

host

7.3.3.23. Tip_download Procedure

tip_download (spawnid file);

Chapter 7. Reference

83

Chapter 7. Reference

spawnid

Downloadfile to the process spawnid (the value returned when the connection was established), using the
~put command under tip. Most often used for single board computers that require downloading programs in
ASCII S-records. Returnkif an error occursQ otherwise.

file

This is the filename to downlaod.

7.3.4. Procedures For Target Boards

7.3.4.1. Default_link Procedure

default_link (board objects destfile flags);

board

objects

destfile

flags

7.3.4.2. Default_target_assemble Procedure

default_target_assemble (source destfile flags);

source

84

Chapter 7. Reference

destfile

flags

7.3.4.3. default_target _compile Procedure

default_target_compile (source destfile type options);

source

destfile

type

options

7.3.4.4. Pop_config Procedure

pop_config (type);

type

7.3.4.5. Prune_warnings Procedure

prune_warnings (text);

85

text

7.3.4.6. Push_build Procedure

push_build (name);

name

7.3.4.7. push_config Procedure

push_config (type name);

type

name

7.3.4.8. Reboot_target Procedure

reboot_target ();

7.3.4.9. Target_assemble Procedure

target_assemble (source destfile flags

);

Chapter 7. Reference

86

Chapter 7. Reference

source

destfile

flags

7.3.4.10. Target_compile Procedure

target_compile (source destfile type options);

source

destfile

type

options

7.3.5. Target Database Procedures

7.3.5.1. Board_info Procedure

board_info (machine op args);

machine

87

op

args

7.3.5.2. Host_info Procedure

host_info (op args);

op

args

7.3.5.3. Set_board_info Procedure

set_board_info (entry value);

entry

value

7.3.5.4. Set_currtarget_info Procedure

set_currtarget_info (entry value);

entry

Chapter 7. Reference

88

Chapter 7. Reference

value

7.3.5.5. Target_info Procedure

target_info (op args);

op

args

7.3.5.6. Unset_board_info Procedure

unset_board_info (entry);

entry

7.3.5.7. Unset_currtarget_info Procedure

unset_currtarget_info (entry);

entry

7.3.5.8. Push_target Procedure

This makes the target namadmebe the current target connection. The valuaameis an index into the
target_info array and is set in the global config file.

89

Chapter 7. Reference

push_target (name);

name

The name of the target to make current connection.

7.3.5.9. Pop_target Procedure

This unsets the current target connection.

pop_target ();

7.3.5.10. List_targets Procedure

This lists all the supported targets for this architecture.

list_targets 0;

7.3.5.11. Push_host Procedure

This makes the host namedmebe the current remote host connection. The valugamiheis an index into the
target_info array and is set in the global config file.

push_host (name);

name

7.3.5.12. Pop_host Procedure

This unsets the current host connection.

pop_host ();

90

Chapter 7. Reference

7.3.5.13. Compile Procedure

This invokes the compiler as set by CC to compile thefilide . The default options for many cross compilation

targets arguessedy DejaGnu, and these options can be added to by passing in more parameters as arguments to
compile. Optionally, this will also use the value of tisflagsfield in the target config array. If the host is not the same
as the build machines, then then compiler is run on the remote hostexaegte _anywhere

compile (file);

file

7.3.5.14. Archive Procedure

This produces an archive file. Any parameters passadctuve are used in addition to the default flags. Optionally,
this will also use the value of thexrflagsfield in the target config array. If the host is not the same as the build
machines, then then archiver is run on the remote host @siagute_anywhere

archive (file);

file

7.3.5.15. Ranlib Procedure

This generates an index for the archive file for systems that aren’t POSIX yet. Any parameters peasidn toe
used in for the flags.

ranlib (file);

file

91

Chapter 7. Reference

7.3.5.16. Execute_anywhere Procedure

This executes themdlineon the proper host. This should be used as a replacement for the Tcl corarenad this

version utilizes the target config info to execute this command on the build machine or a remote host. All config
information for the remote host must be setup to have this command work. If this is a canadian cross, (where we test
a cross compiler that runs on a different host then where DejaGnu is running) then a connection is made to the
remote host and the command is executed there. It returns either REMOTERROR (for an error) or the output
produced when the command was executed. This is used for running the tool to be tested, not a test case.

execute_anywhere (cmdline);

cmdline

7.3.6. Platform Dependant Procedures

Each combination of target and tool requires some target-dependent procedures. The names of these procedures have
a common form: the tool name, followed by an underhaand finally a suffix describing the procedure’s purpose.
For example, a procedure to extract the version from GDB is called gdb_version.

runtest itself calls only two of these procedures, ${tool} exit and ${tool} version; these procedures use no
arguments.

The other two procedures, ${tool}_start and ${tool} load}, are only called by the test suites themselves (or by
testsuite-specific initialization code); they may take arguments or not, depending on the conventions used within each
test suite.

The usual convention for return codes from any of these procedures (although it is not requiratebt) is to
returnO if the procedure succeededif it failed, and-1 if there was a communication error.

7.3.6.1. ${tool}_start Procedure

Starts a particular tool. For an interactive takftpol}_start starts and initializes the tool, leaving the tool up and
running for the test cases; an examplgdb_start , the start function for GDB. For a batch oriented tool,
${tool}_start is optional; the recommended convention is taigtol}_start run the tool, leaving the output
in a variable calledomp_output . Test scripts can then analygeomp_output to determine the test results. An
example of this second kind of start functiorgis_start , the start function for GCC.

92

Chapter 7. Reference

DejaGnu itself does not cafftool}_start . The initialization modulés{tool}_init.exp must call
${tool}_start for interactive tools; for batch-oriented tools, each individual test script $@tisl}_start (or
makes other arrangements to run the tool).

${tool}_start 0;

7.3.6.2. ${tool}_load Procedure

Loads something into a tool. For an interactive tool, this conditions the tool for a particular test case; for example,
gdb_load loads a new executable file into the debugger. For batch oriented $¢totst} load may do
nothing---though, for example, the GCC support ugesload to load and run a binary on the target environment.
Conventionally${tool} load leaves the output of any program it runs in a variable called $exec_output. Writing
${tool}_load can be the most complex part of extending DejaGnu to a new tool or a new target, if it requires much
communication coding or file downloading. Test scripts $gbol}_load

${tool} load ();

7.3.6.3. ${tool}_exit Procedure

Cleans up (if necessary) before DejaGnu exits. For interactive tools, this usually ends the interactive session. You can
also useb{tool}_exit to remove any temporary files left over from the testsitest calls ${tool}_exit

${tool}_exit 0s

7.3.6.4. ${tool}_version Procedure

Prints the version label and number for ${tool}. This is called by the DejaGnu procedure that prints the final
summary report. The output should consist of the full path name used for the tested tool, and its version number.

${tool}_version 0;

93

Chapter 7. Reference

7.3.7. Utility Procedures

7.3.7.1. Getdirs Procedure

Returns a list of all the directories in the single directory a single directory that match an optional pattern.

getdirs (rootdir pattern);

args

pattern

If you do not specifypattern , Getdirs assumes a default pattern*ofYou may use the common shell
wildcard characters in the pattern. If no directories match the pattern, then a NULL string is returned

7.3.7.2. Find Procedure

Search for files whose names mapettern(using shell wildcard characters for filename expansion). Search
subdirectories recursively, startingrabtdir. The result is the list of files whose names match; if no files match, the
result is empty. Filenames in the result include all intervening subdirectory names. If no files match the pattern, then
a NULL string is returned.

find (rootdir pattern);

rootdir

The top level directory to search the search from.

pattern

A csh "glob" style regular expression reprsenting the files to find.

7.3.7.3. Which Procedure

Searches the execution path for an executabl®iilary, like the the BSDwhich utility. This procedure uses the
shell environment variablBATH. It returns0 if the binary is not in the path, or if there is IRATH environment
variable. Ifbinary is in the path, it returns the full path tonary.

which (file);

94

Chapter 7. Reference

binary

The executable program or shell script to look for.

7.3.7.4. Grep Procedure

Search the file calleflename (a fully specified path) for lines that contain a match for regular expressgexp
The result is a list of all the lines that match. If no lines match, the result is an empty string. Spgeipusing the
standard regular expression style used by the Unix utility program grep.

Use the optional third argumeline to start lines in the result with the line numberfilaname . (This argument is
simply an option flag; type it just as showdine .)

grep (filename regexp --line);

filename

The file to search.

regexp

The Unix style regular expression (as used byghep Unix utility) to search for.

--line

Prefix the line number to each line where the regexp matches.

7.3.7.5. Prune Procedure
Remove elements of the Tcl ligst. Elements are fields delimited by spaces. The result is a copy of list, without any
elements that matgbattern You can use the common shell wildcard characters to specify the pattern.

prune (list pattern);

list

A Tcl list containing the original data. Commonly this is the output of a batch executed command, like running
a compiler.

pattern

The csh shell "glob" style pattern to search for.

95

Chapter 7. Reference

7.3.7.6. Slay Procedure

This look in the process table foameand send it a unix SIGINT, killing the process. This will only work under NT
if you have Cygwin or another Unix system for NT installed.

slay (name);

name

The name of the program to kill.

7.3.7.7. Absolute Procedure

This procedure takes the relatigath and converts it to an absolute path.

absolute (path);

path

The path to convert.

7.3.7.8. Psource Procedure

This sources the filelename and traps all errors. It also ignores all extraneous output. If there was an error it returns
al, otherwise it returns @.

psource (file);

filename

The filename to Tcl script to source.

7.3.7.9. Runtest_file_p Procedure

Searchruntess fortestcasend returrl if found, O if not. runtestss a list of two elements. The first is a copy of
what was on the right side of theif

96

Chapter 7. Reference

" was specified, or an empty string if no such argument is present. The second is the pathname of the current testcase
under consideration. This is used by tools like compilers where each testcase is afile.

runtest_file_p (runtests testcase);

runtests

The list of patterns to compare against.

testcase

The test case filename.

7.3.7.10. Diff Procedure
Compares the two files and returng d they match, or @ if they don't. If verbose is set, then it'll print the
differences to the screen.

diff (file_1 file 2);

file_1

The first file to compare.

file_2

The second file to compare.

7.3.7.11. Setenv Procedure

Sets the environment variablar to the valueval.

setenv (var val);

var

The environment variable to set.

val

The value to set the variable to.

97

Chapter 7. Reference

7.3.7.12. unsetenv Procedure

Unsets the environment variablar.

unsetenv (var);

var

The environment variable to unset.

7.3.7.13. Getenv Procedure

Returns the value ofar in the environment if it exists, otherwise it returns NULL.

getenv (var);

var

The environment variable to get the value of.

7.3.7.14. Prune_system_crud Procedure

For systensystemdelete text the host or target operating system might issue that will interfere with pattern
matching of program output itext An example is the message that is printed if a shared library is out of date.

prune_system_crud (system test);

system

The system error messages to look for to screen out .

text

The Tcl variable containing the text.

7.3.8. Libgloss, A Free BSP

Libgloss is a fre@BSP(Board Support Package) commonly used with GCC and G++ to produce a fully linked
executable image for an embedded systems.

98

Chapter 7. Reference

7.3.8.1. Libgloss_link_flags Procedure

libgloss_link_flags (args);

args

7.3.8.2. Libgloss_include_flags Procedure

libgloss_include_flags (args);

args

7.3.8.3. Newlib_link_flags Procedure

newlib_link_flags (args);

args

7.3.8.4. Newlib_include_flags Procedure

newlib_include_flags (args);

args

99

7.3.8.5. Libio_include_flags Procedure

libio_include_flags (args);

args

7.3.8.6. Libio_link_flags Procedure

libio_link_flags (args);

args

7.3.8.7. G++_include_flags Procedure

g++_include_flags (args);

args

7.3.8.8. G++_link_flags Procedure

g++_link_flags (args);

args

Chapter 7. Reference

100

7.3.8.9. Libstdc++_include_flags Procedure

libstdc++_include_flags (args);

args

7.3.8.10. Libstdc++_link_flags Procedure

libstdc++_link_flags (args);

args

7.3.8.11. Get_multilibs Procedure

get_multilibs (args);

args

7.3.8.12. Find_binutils_prog Procedure

find_binutils_prog (name);

name

Chapter 7. Reference

101

Chapter 7. Reference

7.3.8.13. Find_gcc Procedure

find_gcc ();

7.3.8.14. Find_gcj Procedure

find_gcj ();

7.3.8.15. Find_g++ Procedure

find_g++ ();

7.3.8.16. Find_g77 Procedure

find_g77 ();

7.3.8.17. Process_multilib_options Procedure

process_multilib_options (args);

args

7.3.8.18. Add_multilib_option Procedure

add_multilib_option (args);

102

args

7.3.8.19. Find_gas Procedure

find_gas ();

7.3.8.20. Find_Id Procedure

find_Ild (),

7.3.8.21. Build_wrapper Procedure

build_wrapper (gluefile),

gluefile

7.3.8.22. Winsup_include_flags Procedure

winsup_include_flags (args);

args

Chapter 7. Reference

103

Chapter 7. Reference

7.3.8.23. Winsup_link_flags Procedure

winsup_link_flags (args);

args

7.3.9. Procedures for debugging your Tcl code.
lib/debugger.exp defines these utility procedures:
7.3.9.1. Dumpvars Procedure

This takes a csh style regular expression (glob rules) and prints the values of the global variable names that match. It
is abbreviated adv.

dumpvars (vars);

vars

The variables to dump.

7.3.9.2. Dumplocals Procedure

This takes a csh style regular expression (glob rules) and prints the values of the local variable names that match. It is
abbreviated adl.

dumplocals (args);

args

104

Chapter 7. Reference

7.3.9.3. Dumprocs Procedure

This takes a csh style regular expression (glob rules) and prints the body of all procs that match. It is abbreviated as
dp.

dumprocs (pattern);

pattern

The csh "glob" style pattern to look for.

7.3.9.4. Dumpwatch Procedure

This takes a csh style regular expression (glob rules) and prints all the watchpoints. It is abbrevdated as

dumpwatch (pattern);

pattern

The csh "glob" style pattern to look for.

7.3.9.5. Watcharray Procedure

watcharray (element type);

type
The csh "glob" style pattern to look for.

7.3.9.6. Watchvar Procedure

watchvar (var type);

105

Chapter 7. Reference

7.3.9.7. Watchunset Procedure

This breaks program execution when the variable var is unset. It is abbreviated as

watchunset (arg);

args

7.3.9.8. Watchwrite Procedure

This breaks program execution when the variable var is written. It is abbreviated. as

watchwrite (var);

var

The variable to watch.

7.3.9.9. Watchread Procedure

This breaks program execution when the variable var is read. It is abbreviated as

watchread (var);

var

The variable to watch.

7.3.9.10. Watchdel Procedure

This deletes a the watchpoint from the watch list. It is abbreviateddas

watchdel (args);

106

Chapter 7. Reference

args

7.3.9.11. Print Procedure

This prints the value of the variablar . It is abbreviated ap.

print (var);

var

7.3.9.12. Quit Procedure

This makes runtest exit. It is abbreviatedops

quit ();

7.4. File Map

This is a map of the files in DejaGnu.

+ runtest

« runtest.exp

+ stub-loader.c

. testglue.c

« config

+ baseboards

- lib/debugger.exp
« lib/dg.exp

« lib/framework.exp

107

Chapter 7. Reference

« lib/ftp.exp

« lib/kermit.exp

« lib/libgloss.exp
« lib/mondfe.exp
« lib/remote.exp
« lib/rlogin.exp

« lib/rsh.exp

- lib/standard.exp
. lib/target.exp

« lib/targetdb.exp

- lib/telnet.exp

« lib/tip.exp

« lib/util-defs.exp
« lib/utils.exp

« lib/xsh.exp

+ lib/dejagnu.exp

108

Chapter 8. Unit Testing API

8.1. C Unit Testing API

All of the functions that take ensg parameter use a C char * that is the message to be dislayed. There currently is no
support for variable length arguments.

8.1.1. Pass Function

This prints a message for a successful test completion.

pass (msg);

8.1.2. Fail Function

This prints a message for an unsuccessful test completion.

fail (msg);

8.1.3. Untested Function

This prints a message for an test case that isn’t run for some technical reason.

untested (msg);

8.1.4. Unresolved Function

This prints a message for an test case that is run, but there is no clear result. These output states require a human to
look over the results to determine what happened.

unresolved (msg);

109

Chapter 8. Unit Testing API

8.1.5. Totals Function

This prints out the total numbers of all the test state outputs.

totals ();

8.2. C++ Unit Testing API

All of the methods that take msg parameter use a C char * or STL string, that is the message to be dislayed. There
currently is no support for variable length arguments.

8.2.1. Pass Method

This prints a message for a successful test completion.

TestState::pass (msg);

8.2.2. Fail Method

This prints a message for an unsuccessful test completion.

TestState::fail (msg);

8.2.3. Untested Method

This prints a message for an test case that isn’t run for some technical reason.

TestState::untested (msg);

110

Chapter 8. Unit Testing API

8.2.4. Unresolved Method

This prints a message for an test case that is run, but there is no clear result. These output states require a human to
look over the results to determine what happened.

TestState::unresolved (msg);

8.2.5. Totals Method

This prints out the total numbers of all the test state outputs.

TestState::totals 0s

111

