Libav 0.7.1
libswscale/utils.c
Go to the documentation of this file.
00001 /*
00002  * Copyright (C) 2001-2003 Michael Niedermayer <michaelni@gmx.at>
00003  *
00004  * This file is part of Libav.
00005  *
00006  * Libav is free software; you can redistribute it and/or
00007  * modify it under the terms of the GNU Lesser General Public
00008  * License as published by the Free Software Foundation; either
00009  * version 2.1 of the License, or (at your option) any later version.
00010  *
00011  * Libav is distributed in the hope that it will be useful,
00012  * but WITHOUT ANY WARRANTY; without even the implied warranty of
00013  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
00014  * Lesser General Public License for more details.
00015  *
00016  * You should have received a copy of the GNU Lesser General Public
00017  * License along with Libav; if not, write to the Free Software
00018  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
00019  */
00020 
00021 #define _SVID_SOURCE //needed for MAP_ANONYMOUS
00022 #include <inttypes.h>
00023 #include <string.h>
00024 #include <math.h>
00025 #include <stdio.h>
00026 #include "config.h"
00027 #include <assert.h>
00028 #if HAVE_SYS_MMAN_H
00029 #include <sys/mman.h>
00030 #if defined(MAP_ANON) && !defined(MAP_ANONYMOUS)
00031 #define MAP_ANONYMOUS MAP_ANON
00032 #endif
00033 #endif
00034 #if HAVE_VIRTUALALLOC
00035 #define WIN32_LEAN_AND_MEAN
00036 #include <windows.h>
00037 #endif
00038 #include "swscale.h"
00039 #include "swscale_internal.h"
00040 #include "rgb2rgb.h"
00041 #include "libavutil/intreadwrite.h"
00042 #include "libavutil/x86_cpu.h"
00043 #include "libavutil/cpu.h"
00044 #include "libavutil/avutil.h"
00045 #include "libavutil/bswap.h"
00046 #include "libavutil/mathematics.h"
00047 #include "libavutil/opt.h"
00048 #include "libavutil/pixdesc.h"
00049 
00050 unsigned swscale_version(void)
00051 {
00052     return LIBSWSCALE_VERSION_INT;
00053 }
00054 
00055 const char *swscale_configuration(void)
00056 {
00057     return LIBAV_CONFIGURATION;
00058 }
00059 
00060 const char *swscale_license(void)
00061 {
00062 #define LICENSE_PREFIX "libswscale license: "
00063     return LICENSE_PREFIX LIBAV_LICENSE + sizeof(LICENSE_PREFIX) - 1;
00064 }
00065 
00066 #define RET 0xC3 //near return opcode for x86
00067 
00068 #define isSupportedIn(x)    (       \
00069            (x)==PIX_FMT_YUV420P     \
00070         || (x)==PIX_FMT_YUVA420P    \
00071         || (x)==PIX_FMT_YUYV422     \
00072         || (x)==PIX_FMT_UYVY422     \
00073         || (x)==PIX_FMT_RGB48BE     \
00074         || (x)==PIX_FMT_RGB48LE     \
00075         || (x)==PIX_FMT_RGB32       \
00076         || (x)==PIX_FMT_RGB32_1     \
00077         || (x)==PIX_FMT_BGR48BE     \
00078         || (x)==PIX_FMT_BGR48LE     \
00079         || (x)==PIX_FMT_BGR24       \
00080         || (x)==PIX_FMT_BGR565LE    \
00081         || (x)==PIX_FMT_BGR565BE    \
00082         || (x)==PIX_FMT_BGR555LE    \
00083         || (x)==PIX_FMT_BGR555BE    \
00084         || (x)==PIX_FMT_BGR32       \
00085         || (x)==PIX_FMT_BGR32_1     \
00086         || (x)==PIX_FMT_RGB24       \
00087         || (x)==PIX_FMT_RGB565LE    \
00088         || (x)==PIX_FMT_RGB565BE    \
00089         || (x)==PIX_FMT_RGB555LE    \
00090         || (x)==PIX_FMT_RGB555BE    \
00091         || (x)==PIX_FMT_GRAY8       \
00092         || (x)==PIX_FMT_Y400A       \
00093         || (x)==PIX_FMT_YUV410P     \
00094         || (x)==PIX_FMT_YUV440P     \
00095         || (x)==PIX_FMT_NV12        \
00096         || (x)==PIX_FMT_NV21        \
00097         || (x)==PIX_FMT_GRAY16BE    \
00098         || (x)==PIX_FMT_GRAY16LE    \
00099         || (x)==PIX_FMT_YUV444P     \
00100         || (x)==PIX_FMT_YUV422P     \
00101         || (x)==PIX_FMT_YUV411P     \
00102         || (x)==PIX_FMT_YUVJ420P    \
00103         || (x)==PIX_FMT_YUVJ422P    \
00104         || (x)==PIX_FMT_YUVJ440P    \
00105         || (x)==PIX_FMT_YUVJ444P    \
00106         || (x)==PIX_FMT_PAL8        \
00107         || (x)==PIX_FMT_BGR8        \
00108         || (x)==PIX_FMT_RGB8        \
00109         || (x)==PIX_FMT_BGR4_BYTE   \
00110         || (x)==PIX_FMT_RGB4_BYTE   \
00111         || (x)==PIX_FMT_YUV440P     \
00112         || (x)==PIX_FMT_MONOWHITE   \
00113         || (x)==PIX_FMT_MONOBLACK   \
00114         || (x)==PIX_FMT_YUV420P9LE    \
00115         || (x)==PIX_FMT_YUV444P9LE    \
00116         || (x)==PIX_FMT_YUV420P10LE   \
00117         || (x)==PIX_FMT_YUV422P10LE   \
00118         || (x)==PIX_FMT_YUV444P10LE   \
00119         || (x)==PIX_FMT_YUV420P16LE   \
00120         || (x)==PIX_FMT_YUV422P16LE   \
00121         || (x)==PIX_FMT_YUV444P16LE   \
00122         || (x)==PIX_FMT_YUV420P9BE    \
00123         || (x)==PIX_FMT_YUV444P9BE    \
00124         || (x)==PIX_FMT_YUV420P10BE   \
00125         || (x)==PIX_FMT_YUV444P10BE   \
00126         || (x)==PIX_FMT_YUV422P10BE   \
00127         || (x)==PIX_FMT_YUV420P16BE   \
00128         || (x)==PIX_FMT_YUV422P16BE   \
00129         || (x)==PIX_FMT_YUV444P16BE   \
00130     )
00131 
00132 int sws_isSupportedInput(enum PixelFormat pix_fmt)
00133 {
00134     return isSupportedIn(pix_fmt);
00135 }
00136 
00137 #define isSupportedOut(x)   (       \
00138            (x)==PIX_FMT_YUV420P     \
00139         || (x)==PIX_FMT_YUVA420P    \
00140         || (x)==PIX_FMT_YUYV422     \
00141         || (x)==PIX_FMT_UYVY422     \
00142         || (x)==PIX_FMT_YUV444P     \
00143         || (x)==PIX_FMT_YUV422P     \
00144         || (x)==PIX_FMT_YUV411P     \
00145         || (x)==PIX_FMT_YUVJ420P    \
00146         || (x)==PIX_FMT_YUVJ422P    \
00147         || (x)==PIX_FMT_YUVJ440P    \
00148         || (x)==PIX_FMT_YUVJ444P    \
00149         || isRGBinBytes(x)          \
00150         || isBGRinBytes(x)          \
00151         || (x)==PIX_FMT_RGB565      \
00152         || (x)==PIX_FMT_RGB555      \
00153         || (x)==PIX_FMT_RGB444      \
00154         || (x)==PIX_FMT_BGR565      \
00155         || (x)==PIX_FMT_BGR555      \
00156         || (x)==PIX_FMT_BGR444      \
00157         || (x)==PIX_FMT_RGB8        \
00158         || (x)==PIX_FMT_BGR8        \
00159         || (x)==PIX_FMT_RGB4_BYTE   \
00160         || (x)==PIX_FMT_BGR4_BYTE   \
00161         || (x)==PIX_FMT_RGB4        \
00162         || (x)==PIX_FMT_BGR4        \
00163         || (x)==PIX_FMT_MONOBLACK   \
00164         || (x)==PIX_FMT_MONOWHITE   \
00165         || (x)==PIX_FMT_NV12        \
00166         || (x)==PIX_FMT_NV21        \
00167         || (x)==PIX_FMT_GRAY16BE    \
00168         || (x)==PIX_FMT_GRAY16LE    \
00169         || (x)==PIX_FMT_GRAY8       \
00170         || (x)==PIX_FMT_YUV410P     \
00171         || (x)==PIX_FMT_YUV440P     \
00172         || (x)==PIX_FMT_YUV420P9LE    \
00173         || (x)==PIX_FMT_YUV420P10LE   \
00174         || (x)==PIX_FMT_YUV420P16LE   \
00175         || (x)==PIX_FMT_YUV422P16LE   \
00176         || (x)==PIX_FMT_YUV444P16LE   \
00177         || (x)==PIX_FMT_YUV420P9BE    \
00178         || (x)==PIX_FMT_YUV420P10BE   \
00179         || (x)==PIX_FMT_YUV420P16BE   \
00180         || (x)==PIX_FMT_YUV422P16BE   \
00181         || (x)==PIX_FMT_YUV444P16BE   \
00182     )
00183 
00184 int sws_isSupportedOutput(enum PixelFormat pix_fmt)
00185 {
00186     return isSupportedOut(pix_fmt);
00187 }
00188 
00189 extern const int32_t ff_yuv2rgb_coeffs[8][4];
00190 
00191 const char *sws_format_name(enum PixelFormat format)
00192 {
00193     if ((unsigned)format < PIX_FMT_NB && av_pix_fmt_descriptors[format].name)
00194         return av_pix_fmt_descriptors[format].name;
00195     else
00196         return "Unknown format";
00197 }
00198 
00199 static double getSplineCoeff(double a, double b, double c, double d, double dist)
00200 {
00201     if (dist<=1.0) return ((d*dist + c)*dist + b)*dist +a;
00202     else           return getSplineCoeff(        0.0,
00203                                           b+ 2.0*c + 3.0*d,
00204                                                  c + 3.0*d,
00205                                          -b- 3.0*c - 6.0*d,
00206                                          dist-1.0);
00207 }
00208 
00209 static int initFilter(int16_t **outFilter, int16_t **filterPos, int *outFilterSize, int xInc,
00210                       int srcW, int dstW, int filterAlign, int one, int flags, int cpu_flags,
00211                       SwsVector *srcFilter, SwsVector *dstFilter, double param[2])
00212 {
00213     int i;
00214     int filterSize;
00215     int filter2Size;
00216     int minFilterSize;
00217     int64_t *filter=NULL;
00218     int64_t *filter2=NULL;
00219     const int64_t fone= 1LL<<54;
00220     int ret= -1;
00221 
00222     emms_c(); //FIXME this should not be required but it IS (even for non-MMX versions)
00223 
00224     // NOTE: the +1 is for the MMX scaler which reads over the end
00225     FF_ALLOC_OR_GOTO(NULL, *filterPos, (dstW+1)*sizeof(int16_t), fail);
00226 
00227     if (FFABS(xInc - 0x10000) <10) { // unscaled
00228         int i;
00229         filterSize= 1;
00230         FF_ALLOCZ_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
00231 
00232         for (i=0; i<dstW; i++) {
00233             filter[i*filterSize]= fone;
00234             (*filterPos)[i]=i;
00235         }
00236 
00237     } else if (flags&SWS_POINT) { // lame looking point sampling mode
00238         int i;
00239         int xDstInSrc;
00240         filterSize= 1;
00241         FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
00242 
00243         xDstInSrc= xInc/2 - 0x8000;
00244         for (i=0; i<dstW; i++) {
00245             int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
00246 
00247             (*filterPos)[i]= xx;
00248             filter[i]= fone;
00249             xDstInSrc+= xInc;
00250         }
00251     } else if ((xInc <= (1<<16) && (flags&SWS_AREA)) || (flags&SWS_FAST_BILINEAR)) { // bilinear upscale
00252         int i;
00253         int xDstInSrc;
00254         filterSize= 2;
00255         FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
00256 
00257         xDstInSrc= xInc/2 - 0x8000;
00258         for (i=0; i<dstW; i++) {
00259             int xx= (xDstInSrc - ((filterSize-1)<<15) + (1<<15))>>16;
00260             int j;
00261 
00262             (*filterPos)[i]= xx;
00263             //bilinear upscale / linear interpolate / area averaging
00264             for (j=0; j<filterSize; j++) {
00265                 int64_t coeff= fone - FFABS((xx<<16) - xDstInSrc)*(fone>>16);
00266                 if (coeff<0) coeff=0;
00267                 filter[i*filterSize + j]= coeff;
00268                 xx++;
00269             }
00270             xDstInSrc+= xInc;
00271         }
00272     } else {
00273         int64_t xDstInSrc;
00274         int sizeFactor;
00275 
00276         if      (flags&SWS_BICUBIC)      sizeFactor=  4;
00277         else if (flags&SWS_X)            sizeFactor=  8;
00278         else if (flags&SWS_AREA)         sizeFactor=  1; //downscale only, for upscale it is bilinear
00279         else if (flags&SWS_GAUSS)        sizeFactor=  8;   // infinite ;)
00280         else if (flags&SWS_LANCZOS)      sizeFactor= param[0] != SWS_PARAM_DEFAULT ? ceil(2*param[0]) : 6;
00281         else if (flags&SWS_SINC)         sizeFactor= 20; // infinite ;)
00282         else if (flags&SWS_SPLINE)       sizeFactor= 20;  // infinite ;)
00283         else if (flags&SWS_BILINEAR)     sizeFactor=  2;
00284         else {
00285             sizeFactor= 0; //GCC warning killer
00286             assert(0);
00287         }
00288 
00289         if (xInc <= 1<<16)      filterSize= 1 + sizeFactor; // upscale
00290         else                    filterSize= 1 + (sizeFactor*srcW + dstW - 1)/ dstW;
00291 
00292         filterSize = av_clip(filterSize, 1, srcW - 2);
00293 
00294         FF_ALLOC_OR_GOTO(NULL, filter, dstW*sizeof(*filter)*filterSize, fail);
00295 
00296         xDstInSrc= xInc - 0x10000;
00297         for (i=0; i<dstW; i++) {
00298             int xx= (xDstInSrc - ((filterSize-2)<<16)) / (1<<17);
00299             int j;
00300             (*filterPos)[i]= xx;
00301             for (j=0; j<filterSize; j++) {
00302                 int64_t d= ((int64_t)FFABS((xx<<17) - xDstInSrc))<<13;
00303                 double floatd;
00304                 int64_t coeff;
00305 
00306                 if (xInc > 1<<16)
00307                     d= d*dstW/srcW;
00308                 floatd= d * (1.0/(1<<30));
00309 
00310                 if (flags & SWS_BICUBIC) {
00311                     int64_t B= (param[0] != SWS_PARAM_DEFAULT ? param[0] :   0) * (1<<24);
00312                     int64_t C= (param[1] != SWS_PARAM_DEFAULT ? param[1] : 0.6) * (1<<24);
00313                     int64_t dd = ( d*d)>>30;
00314                     int64_t ddd= (dd*d)>>30;
00315 
00316                     if      (d < 1LL<<30)
00317                         coeff = (12*(1<<24)-9*B-6*C)*ddd + (-18*(1<<24)+12*B+6*C)*dd + (6*(1<<24)-2*B)*(1<<30);
00318                     else if (d < 1LL<<31)
00319                         coeff = (-B-6*C)*ddd + (6*B+30*C)*dd + (-12*B-48*C)*d + (8*B+24*C)*(1<<30);
00320                     else
00321                         coeff=0.0;
00322                     coeff *= fone>>(30+24);
00323                 }
00324 /*                else if (flags & SWS_X) {
00325                     double p= param ? param*0.01 : 0.3;
00326                     coeff = d ? sin(d*M_PI)/(d*M_PI) : 1.0;
00327                     coeff*= pow(2.0, - p*d*d);
00328                 }*/
00329                 else if (flags & SWS_X) {
00330                     double A= param[0] != SWS_PARAM_DEFAULT ? param[0] : 1.0;
00331                     double c;
00332 
00333                     if (floatd<1.0)
00334                         c = cos(floatd*M_PI);
00335                     else
00336                         c=-1.0;
00337                     if (c<0.0)      c= -pow(-c, A);
00338                     else            c=  pow( c, A);
00339                     coeff= (c*0.5 + 0.5)*fone;
00340                 } else if (flags & SWS_AREA) {
00341                     int64_t d2= d - (1<<29);
00342                     if      (d2*xInc < -(1LL<<(29+16))) coeff= 1.0 * (1LL<<(30+16));
00343                     else if (d2*xInc <  (1LL<<(29+16))) coeff= -d2*xInc + (1LL<<(29+16));
00344                     else coeff=0.0;
00345                     coeff *= fone>>(30+16);
00346                 } else if (flags & SWS_GAUSS) {
00347                     double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
00348                     coeff = (pow(2.0, - p*floatd*floatd))*fone;
00349                 } else if (flags & SWS_SINC) {
00350                     coeff = (d ? sin(floatd*M_PI)/(floatd*M_PI) : 1.0)*fone;
00351                 } else if (flags & SWS_LANCZOS) {
00352                     double p= param[0] != SWS_PARAM_DEFAULT ? param[0] : 3.0;
00353                     coeff = (d ? sin(floatd*M_PI)*sin(floatd*M_PI/p)/(floatd*floatd*M_PI*M_PI/p) : 1.0)*fone;
00354                     if (floatd>p) coeff=0;
00355                 } else if (flags & SWS_BILINEAR) {
00356                     coeff= (1<<30) - d;
00357                     if (coeff<0) coeff=0;
00358                     coeff *= fone >> 30;
00359                 } else if (flags & SWS_SPLINE) {
00360                     double p=-2.196152422706632;
00361                     coeff = getSplineCoeff(1.0, 0.0, p, -p-1.0, floatd) * fone;
00362                 } else {
00363                     coeff= 0.0; //GCC warning killer
00364                     assert(0);
00365                 }
00366 
00367                 filter[i*filterSize + j]= coeff;
00368                 xx++;
00369             }
00370             xDstInSrc+= 2*xInc;
00371         }
00372     }
00373 
00374     /* apply src & dst Filter to filter -> filter2
00375        av_free(filter);
00376     */
00377     assert(filterSize>0);
00378     filter2Size= filterSize;
00379     if (srcFilter) filter2Size+= srcFilter->length - 1;
00380     if (dstFilter) filter2Size+= dstFilter->length - 1;
00381     assert(filter2Size>0);
00382     FF_ALLOCZ_OR_GOTO(NULL, filter2, filter2Size*dstW*sizeof(*filter2), fail);
00383 
00384     for (i=0; i<dstW; i++) {
00385         int j, k;
00386 
00387         if(srcFilter) {
00388             for (k=0; k<srcFilter->length; k++) {
00389                 for (j=0; j<filterSize; j++)
00390                     filter2[i*filter2Size + k + j] += srcFilter->coeff[k]*filter[i*filterSize + j];
00391             }
00392         } else {
00393             for (j=0; j<filterSize; j++)
00394                 filter2[i*filter2Size + j]= filter[i*filterSize + j];
00395         }
00396         //FIXME dstFilter
00397 
00398         (*filterPos)[i]+= (filterSize-1)/2 - (filter2Size-1)/2;
00399     }
00400     av_freep(&filter);
00401 
00402     /* try to reduce the filter-size (step1 find size and shift left) */
00403     // Assume it is near normalized (*0.5 or *2.0 is OK but * 0.001 is not).
00404     minFilterSize= 0;
00405     for (i=dstW-1; i>=0; i--) {
00406         int min= filter2Size;
00407         int j;
00408         int64_t cutOff=0.0;
00409 
00410         /* get rid of near zero elements on the left by shifting left */
00411         for (j=0; j<filter2Size; j++) {
00412             int k;
00413             cutOff += FFABS(filter2[i*filter2Size]);
00414 
00415             if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
00416 
00417             /* preserve monotonicity because the core can't handle the filter otherwise */
00418             if (i<dstW-1 && (*filterPos)[i] >= (*filterPos)[i+1]) break;
00419 
00420             // move filter coefficients left
00421             for (k=1; k<filter2Size; k++)
00422                 filter2[i*filter2Size + k - 1]= filter2[i*filter2Size + k];
00423             filter2[i*filter2Size + k - 1]= 0;
00424             (*filterPos)[i]++;
00425         }
00426 
00427         cutOff=0;
00428         /* count near zeros on the right */
00429         for (j=filter2Size-1; j>0; j--) {
00430             cutOff += FFABS(filter2[i*filter2Size + j]);
00431 
00432             if (cutOff > SWS_MAX_REDUCE_CUTOFF*fone) break;
00433             min--;
00434         }
00435 
00436         if (min>minFilterSize) minFilterSize= min;
00437     }
00438 
00439     if (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) {
00440         // we can handle the special case 4,
00441         // so we don't want to go to the full 8
00442         if (minFilterSize < 5)
00443             filterAlign = 4;
00444 
00445         // We really don't want to waste our time
00446         // doing useless computation, so fall back on
00447         // the scalar C code for very small filters.
00448         // Vectorizing is worth it only if you have a
00449         // decent-sized vector.
00450         if (minFilterSize < 3)
00451             filterAlign = 1;
00452     }
00453 
00454     if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
00455         // special case for unscaled vertical filtering
00456         if (minFilterSize == 1 && filterAlign == 2)
00457             filterAlign= 1;
00458     }
00459 
00460     assert(minFilterSize > 0);
00461     filterSize= (minFilterSize +(filterAlign-1)) & (~(filterAlign-1));
00462     assert(filterSize > 0);
00463     filter= av_malloc(filterSize*dstW*sizeof(*filter));
00464     if (filterSize >= MAX_FILTER_SIZE*16/((flags&SWS_ACCURATE_RND) ? APCK_SIZE : 16) || !filter)
00465         goto fail;
00466     *outFilterSize= filterSize;
00467 
00468     if (flags&SWS_PRINT_INFO)
00469         av_log(NULL, AV_LOG_VERBOSE, "SwScaler: reducing / aligning filtersize %d -> %d\n", filter2Size, filterSize);
00470     /* try to reduce the filter-size (step2 reduce it) */
00471     for (i=0; i<dstW; i++) {
00472         int j;
00473 
00474         for (j=0; j<filterSize; j++) {
00475             if (j>=filter2Size) filter[i*filterSize + j]= 0;
00476             else               filter[i*filterSize + j]= filter2[i*filter2Size + j];
00477             if((flags & SWS_BITEXACT) && j>=minFilterSize)
00478                 filter[i*filterSize + j]= 0;
00479         }
00480     }
00481 
00482     //FIXME try to align filterPos if possible
00483 
00484     //fix borders
00485     for (i=0; i<dstW; i++) {
00486         int j;
00487         if ((*filterPos)[i] < 0) {
00488             // move filter coefficients left to compensate for filterPos
00489             for (j=1; j<filterSize; j++) {
00490                 int left= FFMAX(j + (*filterPos)[i], 0);
00491                 filter[i*filterSize + left] += filter[i*filterSize + j];
00492                 filter[i*filterSize + j]=0;
00493             }
00494             (*filterPos)[i]= 0;
00495         }
00496 
00497         if ((*filterPos)[i] + filterSize > srcW) {
00498             int shift= (*filterPos)[i] + filterSize - srcW;
00499             // move filter coefficients right to compensate for filterPos
00500             for (j=filterSize-2; j>=0; j--) {
00501                 int right= FFMIN(j + shift, filterSize-1);
00502                 filter[i*filterSize +right] += filter[i*filterSize +j];
00503                 filter[i*filterSize +j]=0;
00504             }
00505             (*filterPos)[i]= srcW - filterSize;
00506         }
00507     }
00508 
00509     // Note the +1 is for the MMX scaler which reads over the end
00510     /* align at 16 for AltiVec (needed by hScale_altivec_real) */
00511     FF_ALLOCZ_OR_GOTO(NULL, *outFilter, *outFilterSize*(dstW+1)*sizeof(int16_t), fail);
00512 
00513     /* normalize & store in outFilter */
00514     for (i=0; i<dstW; i++) {
00515         int j;
00516         int64_t error=0;
00517         int64_t sum=0;
00518 
00519         for (j=0; j<filterSize; j++) {
00520             sum+= filter[i*filterSize + j];
00521         }
00522         sum= (sum + one/2)/ one;
00523         for (j=0; j<*outFilterSize; j++) {
00524             int64_t v= filter[i*filterSize + j] + error;
00525             int intV= ROUNDED_DIV(v, sum);
00526             (*outFilter)[i*(*outFilterSize) + j]= intV;
00527             error= v - intV*sum;
00528         }
00529     }
00530 
00531     (*filterPos)[dstW]= (*filterPos)[dstW-1]; // the MMX scaler will read over the end
00532     for (i=0; i<*outFilterSize; i++) {
00533         int j= dstW*(*outFilterSize);
00534         (*outFilter)[j + i]= (*outFilter)[j + i - (*outFilterSize)];
00535     }
00536 
00537     ret=0;
00538 fail:
00539     av_free(filter);
00540     av_free(filter2);
00541     return ret;
00542 }
00543 
00544 #if HAVE_MMX2
00545 static int initMMX2HScaler(int dstW, int xInc, uint8_t *filterCode, int16_t *filter, int32_t *filterPos, int numSplits)
00546 {
00547     uint8_t *fragmentA;
00548     x86_reg imm8OfPShufW1A;
00549     x86_reg imm8OfPShufW2A;
00550     x86_reg fragmentLengthA;
00551     uint8_t *fragmentB;
00552     x86_reg imm8OfPShufW1B;
00553     x86_reg imm8OfPShufW2B;
00554     x86_reg fragmentLengthB;
00555     int fragmentPos;
00556 
00557     int xpos, i;
00558 
00559     // create an optimized horizontal scaling routine
00560     /* This scaler is made of runtime-generated MMX2 code using specially
00561      * tuned pshufw instructions. For every four output pixels, if four
00562      * input pixels are enough for the fast bilinear scaling, then a chunk
00563      * of fragmentB is used. If five input pixels are needed, then a chunk
00564      * of fragmentA is used.
00565      */
00566 
00567     //code fragment
00568 
00569     __asm__ volatile(
00570         "jmp                         9f                 \n\t"
00571     // Begin
00572         "0:                                             \n\t"
00573         "movq    (%%"REG_d", %%"REG_a"), %%mm3          \n\t"
00574         "movd    (%%"REG_c", %%"REG_S"), %%mm0          \n\t"
00575         "movd   1(%%"REG_c", %%"REG_S"), %%mm1          \n\t"
00576         "punpcklbw                %%mm7, %%mm1          \n\t"
00577         "punpcklbw                %%mm7, %%mm0          \n\t"
00578         "pshufw                   $0xFF, %%mm1, %%mm1   \n\t"
00579         "1:                                             \n\t"
00580         "pshufw                   $0xFF, %%mm0, %%mm0   \n\t"
00581         "2:                                             \n\t"
00582         "psubw                    %%mm1, %%mm0          \n\t"
00583         "movl   8(%%"REG_b", %%"REG_a"), %%esi          \n\t"
00584         "pmullw                   %%mm3, %%mm0          \n\t"
00585         "psllw                       $7, %%mm1          \n\t"
00586         "paddw                    %%mm1, %%mm0          \n\t"
00587 
00588         "movq                     %%mm0, (%%"REG_D", %%"REG_a") \n\t"
00589 
00590         "add                         $8, %%"REG_a"      \n\t"
00591     // End
00592         "9:                                             \n\t"
00593 //        "int $3                                         \n\t"
00594         "lea                 " LOCAL_MANGLE(0b) ", %0   \n\t"
00595         "lea                 " LOCAL_MANGLE(1b) ", %1   \n\t"
00596         "lea                 " LOCAL_MANGLE(2b) ", %2   \n\t"
00597         "dec                         %1                 \n\t"
00598         "dec                         %2                 \n\t"
00599         "sub                         %0, %1             \n\t"
00600         "sub                         %0, %2             \n\t"
00601         "lea                 " LOCAL_MANGLE(9b) ", %3   \n\t"
00602         "sub                         %0, %3             \n\t"
00603 
00604 
00605         :"=r" (fragmentA), "=r" (imm8OfPShufW1A), "=r" (imm8OfPShufW2A),
00606         "=r" (fragmentLengthA)
00607     );
00608 
00609     __asm__ volatile(
00610         "jmp                         9f                 \n\t"
00611     // Begin
00612         "0:                                             \n\t"
00613         "movq    (%%"REG_d", %%"REG_a"), %%mm3          \n\t"
00614         "movd    (%%"REG_c", %%"REG_S"), %%mm0          \n\t"
00615         "punpcklbw                %%mm7, %%mm0          \n\t"
00616         "pshufw                   $0xFF, %%mm0, %%mm1   \n\t"
00617         "1:                                             \n\t"
00618         "pshufw                   $0xFF, %%mm0, %%mm0   \n\t"
00619         "2:                                             \n\t"
00620         "psubw                    %%mm1, %%mm0          \n\t"
00621         "movl   8(%%"REG_b", %%"REG_a"), %%esi          \n\t"
00622         "pmullw                   %%mm3, %%mm0          \n\t"
00623         "psllw                       $7, %%mm1          \n\t"
00624         "paddw                    %%mm1, %%mm0          \n\t"
00625 
00626         "movq                     %%mm0, (%%"REG_D", %%"REG_a") \n\t"
00627 
00628         "add                         $8, %%"REG_a"      \n\t"
00629     // End
00630         "9:                                             \n\t"
00631 //        "int                       $3                   \n\t"
00632         "lea                 " LOCAL_MANGLE(0b) ", %0   \n\t"
00633         "lea                 " LOCAL_MANGLE(1b) ", %1   \n\t"
00634         "lea                 " LOCAL_MANGLE(2b) ", %2   \n\t"
00635         "dec                         %1                 \n\t"
00636         "dec                         %2                 \n\t"
00637         "sub                         %0, %1             \n\t"
00638         "sub                         %0, %2             \n\t"
00639         "lea                 " LOCAL_MANGLE(9b) ", %3   \n\t"
00640         "sub                         %0, %3             \n\t"
00641 
00642 
00643         :"=r" (fragmentB), "=r" (imm8OfPShufW1B), "=r" (imm8OfPShufW2B),
00644         "=r" (fragmentLengthB)
00645     );
00646 
00647     xpos= 0; //lumXInc/2 - 0x8000; // difference between pixel centers
00648     fragmentPos=0;
00649 
00650     for (i=0; i<dstW/numSplits; i++) {
00651         int xx=xpos>>16;
00652 
00653         if ((i&3) == 0) {
00654             int a=0;
00655             int b=((xpos+xInc)>>16) - xx;
00656             int c=((xpos+xInc*2)>>16) - xx;
00657             int d=((xpos+xInc*3)>>16) - xx;
00658             int inc                = (d+1<4);
00659             uint8_t *fragment      = (d+1<4) ? fragmentB       : fragmentA;
00660             x86_reg imm8OfPShufW1  = (d+1<4) ? imm8OfPShufW1B  : imm8OfPShufW1A;
00661             x86_reg imm8OfPShufW2  = (d+1<4) ? imm8OfPShufW2B  : imm8OfPShufW2A;
00662             x86_reg fragmentLength = (d+1<4) ? fragmentLengthB : fragmentLengthA;
00663             int maxShift= 3-(d+inc);
00664             int shift=0;
00665 
00666             if (filterCode) {
00667                 filter[i  ] = (( xpos         & 0xFFFF) ^ 0xFFFF)>>9;
00668                 filter[i+1] = (((xpos+xInc  ) & 0xFFFF) ^ 0xFFFF)>>9;
00669                 filter[i+2] = (((xpos+xInc*2) & 0xFFFF) ^ 0xFFFF)>>9;
00670                 filter[i+3] = (((xpos+xInc*3) & 0xFFFF) ^ 0xFFFF)>>9;
00671                 filterPos[i/2]= xx;
00672 
00673                 memcpy(filterCode + fragmentPos, fragment, fragmentLength);
00674 
00675                 filterCode[fragmentPos + imm8OfPShufW1]=
00676                     (a+inc) | ((b+inc)<<2) | ((c+inc)<<4) | ((d+inc)<<6);
00677                 filterCode[fragmentPos + imm8OfPShufW2]=
00678                     a | (b<<2) | (c<<4) | (d<<6);
00679 
00680                 if (i+4-inc>=dstW) shift=maxShift; //avoid overread
00681                 else if ((filterPos[i/2]&3) <= maxShift) shift=filterPos[i/2]&3; //Align
00682 
00683                 if (shift && i>=shift) {
00684                     filterCode[fragmentPos + imm8OfPShufW1]+= 0x55*shift;
00685                     filterCode[fragmentPos + imm8OfPShufW2]+= 0x55*shift;
00686                     filterPos[i/2]-=shift;
00687                 }
00688             }
00689 
00690             fragmentPos+= fragmentLength;
00691 
00692             if (filterCode)
00693                 filterCode[fragmentPos]= RET;
00694         }
00695         xpos+=xInc;
00696     }
00697     if (filterCode)
00698         filterPos[((i/2)+1)&(~1)]= xpos>>16; // needed to jump to the next part
00699 
00700     return fragmentPos + 1;
00701 }
00702 #endif /* HAVE_MMX2 */
00703 
00704 static void getSubSampleFactors(int *h, int *v, enum PixelFormat format)
00705 {
00706     *h = av_pix_fmt_descriptors[format].log2_chroma_w;
00707     *v = av_pix_fmt_descriptors[format].log2_chroma_h;
00708 }
00709 
00710 int sws_setColorspaceDetails(SwsContext *c, const int inv_table[4], int srcRange, const int table[4], int dstRange, int brightness, int contrast, int saturation)
00711 {
00712     memcpy(c->srcColorspaceTable, inv_table, sizeof(int)*4);
00713     memcpy(c->dstColorspaceTable,     table, sizeof(int)*4);
00714 
00715     c->brightness= brightness;
00716     c->contrast  = contrast;
00717     c->saturation= saturation;
00718     c->srcRange  = srcRange;
00719     c->dstRange  = dstRange;
00720     if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
00721 
00722     c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[c->dstFormat]);
00723     c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[c->srcFormat]);
00724 
00725     ff_yuv2rgb_c_init_tables(c, inv_table, srcRange, brightness, contrast, saturation);
00726     //FIXME factorize
00727 
00728     if (HAVE_ALTIVEC && av_get_cpu_flags() & AV_CPU_FLAG_ALTIVEC)
00729         ff_yuv2rgb_init_tables_altivec(c, inv_table, brightness, contrast, saturation);
00730     return 0;
00731 }
00732 
00733 int sws_getColorspaceDetails(SwsContext *c, int **inv_table, int *srcRange, int **table, int *dstRange, int *brightness, int *contrast, int *saturation)
00734 {
00735     if (isYUV(c->dstFormat) || isGray(c->dstFormat)) return -1;
00736 
00737     *inv_table = c->srcColorspaceTable;
00738     *table     = c->dstColorspaceTable;
00739     *srcRange  = c->srcRange;
00740     *dstRange  = c->dstRange;
00741     *brightness= c->brightness;
00742     *contrast  = c->contrast;
00743     *saturation= c->saturation;
00744 
00745     return 0;
00746 }
00747 
00748 static int handle_jpeg(enum PixelFormat *format)
00749 {
00750     switch (*format) {
00751     case PIX_FMT_YUVJ420P: *format = PIX_FMT_YUV420P; return 1;
00752     case PIX_FMT_YUVJ422P: *format = PIX_FMT_YUV422P; return 1;
00753     case PIX_FMT_YUVJ444P: *format = PIX_FMT_YUV444P; return 1;
00754     case PIX_FMT_YUVJ440P: *format = PIX_FMT_YUV440P; return 1;
00755     default:                                          return 0;
00756     }
00757 }
00758 
00759 SwsContext *sws_alloc_context(void)
00760 {
00761     SwsContext *c= av_mallocz(sizeof(SwsContext));
00762 
00763     c->av_class = &sws_context_class;
00764     av_opt_set_defaults(c);
00765 
00766     return c;
00767 }
00768 
00769 int sws_init_context(SwsContext *c, SwsFilter *srcFilter, SwsFilter *dstFilter)
00770 {
00771     int i;
00772     int usesVFilter, usesHFilter;
00773     int unscaled;
00774     SwsFilter dummyFilter= {NULL, NULL, NULL, NULL};
00775     int srcW= c->srcW;
00776     int srcH= c->srcH;
00777     int dstW= c->dstW;
00778     int dstH= c->dstH;
00779     int dst_stride = FFALIGN(dstW * sizeof(int16_t) + 16, 16), dst_stride_px = dst_stride >> 1;
00780     int flags, cpu_flags;
00781     enum PixelFormat srcFormat= c->srcFormat;
00782     enum PixelFormat dstFormat= c->dstFormat;
00783 
00784     cpu_flags = av_get_cpu_flags();
00785     flags     = c->flags;
00786     emms_c();
00787     if (!rgb15to16) sws_rgb2rgb_init();
00788 
00789     unscaled = (srcW == dstW && srcH == dstH);
00790 
00791     if (!isSupportedIn(srcFormat)) {
00792         av_log(c, AV_LOG_ERROR, "%s is not supported as input pixel format\n", sws_format_name(srcFormat));
00793         return AVERROR(EINVAL);
00794     }
00795     if (!isSupportedOut(dstFormat)) {
00796         av_log(c, AV_LOG_ERROR, "%s is not supported as output pixel format\n", sws_format_name(dstFormat));
00797         return AVERROR(EINVAL);
00798     }
00799 
00800     i= flags & ( SWS_POINT
00801                 |SWS_AREA
00802                 |SWS_BILINEAR
00803                 |SWS_FAST_BILINEAR
00804                 |SWS_BICUBIC
00805                 |SWS_X
00806                 |SWS_GAUSS
00807                 |SWS_LANCZOS
00808                 |SWS_SINC
00809                 |SWS_SPLINE
00810                 |SWS_BICUBLIN);
00811     if(!i || (i & (i-1))) {
00812         av_log(c, AV_LOG_ERROR, "Exactly one scaler algorithm must be chosen\n");
00813         return AVERROR(EINVAL);
00814     }
00815     /* sanity check */
00816     if (srcW<4 || srcH<1 || dstW<8 || dstH<1) { //FIXME check if these are enough and try to lowwer them after fixing the relevant parts of the code
00817         av_log(c, AV_LOG_ERROR, "%dx%d -> %dx%d is invalid scaling dimension\n",
00818                srcW, srcH, dstW, dstH);
00819         return AVERROR(EINVAL);
00820     }
00821 
00822     if (!dstFilter) dstFilter= &dummyFilter;
00823     if (!srcFilter) srcFilter= &dummyFilter;
00824 
00825     c->lumXInc= (((int64_t)srcW<<16) + (dstW>>1))/dstW;
00826     c->lumYInc= (((int64_t)srcH<<16) + (dstH>>1))/dstH;
00827     c->dstFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[dstFormat]);
00828     c->srcFormatBpp = av_get_bits_per_pixel(&av_pix_fmt_descriptors[srcFormat]);
00829     c->vRounder= 4* 0x0001000100010001ULL;
00830 
00831     usesVFilter = (srcFilter->lumV && srcFilter->lumV->length>1) ||
00832                   (srcFilter->chrV && srcFilter->chrV->length>1) ||
00833                   (dstFilter->lumV && dstFilter->lumV->length>1) ||
00834                   (dstFilter->chrV && dstFilter->chrV->length>1);
00835     usesHFilter = (srcFilter->lumH && srcFilter->lumH->length>1) ||
00836                   (srcFilter->chrH && srcFilter->chrH->length>1) ||
00837                   (dstFilter->lumH && dstFilter->lumH->length>1) ||
00838                   (dstFilter->chrH && dstFilter->chrH->length>1);
00839 
00840     getSubSampleFactors(&c->chrSrcHSubSample, &c->chrSrcVSubSample, srcFormat);
00841     getSubSampleFactors(&c->chrDstHSubSample, &c->chrDstVSubSample, dstFormat);
00842 
00843     // reuse chroma for 2 pixels RGB/BGR unless user wants full chroma interpolation
00844     if (isAnyRGB(dstFormat) && !(flags&SWS_FULL_CHR_H_INT)) c->chrDstHSubSample=1;
00845 
00846     // drop some chroma lines if the user wants it
00847     c->vChrDrop= (flags&SWS_SRC_V_CHR_DROP_MASK)>>SWS_SRC_V_CHR_DROP_SHIFT;
00848     c->chrSrcVSubSample+= c->vChrDrop;
00849 
00850     // drop every other pixel for chroma calculation unless user wants full chroma
00851     if (isAnyRGB(srcFormat) && !(flags&SWS_FULL_CHR_H_INP)
00852       && srcFormat!=PIX_FMT_RGB8      && srcFormat!=PIX_FMT_BGR8
00853       && srcFormat!=PIX_FMT_RGB4      && srcFormat!=PIX_FMT_BGR4
00854       && srcFormat!=PIX_FMT_RGB4_BYTE && srcFormat!=PIX_FMT_BGR4_BYTE
00855       && ((dstW>>c->chrDstHSubSample) <= (srcW>>1) || (flags&SWS_FAST_BILINEAR)))
00856         c->chrSrcHSubSample=1;
00857 
00858     // Note the -((-x)>>y) is so that we always round toward +inf.
00859     c->chrSrcW= -((-srcW) >> c->chrSrcHSubSample);
00860     c->chrSrcH= -((-srcH) >> c->chrSrcVSubSample);
00861     c->chrDstW= -((-dstW) >> c->chrDstHSubSample);
00862     c->chrDstH= -((-dstH) >> c->chrDstVSubSample);
00863 
00864     /* unscaled special cases */
00865     if (unscaled && !usesHFilter && !usesVFilter && (c->srcRange == c->dstRange || isAnyRGB(dstFormat))) {
00866         ff_get_unscaled_swscale(c);
00867 
00868         if (c->swScale) {
00869             if (flags&SWS_PRINT_INFO)
00870                 av_log(c, AV_LOG_INFO, "using unscaled %s -> %s special converter\n",
00871                        sws_format_name(srcFormat), sws_format_name(dstFormat));
00872             return 0;
00873         }
00874     }
00875 
00876     FF_ALLOC_OR_GOTO(c, c->formatConvBuffer, FFALIGN(srcW, 16) * 2, fail);
00877     if (HAVE_MMX2 && cpu_flags & AV_CPU_FLAG_MMX2) {
00878         c->canMMX2BeUsed= (dstW >=srcW && (dstW&31)==0 && (srcW&15)==0) ? 1 : 0;
00879         if (!c->canMMX2BeUsed && dstW >=srcW && (srcW&15)==0 && (flags&SWS_FAST_BILINEAR)) {
00880             if (flags&SWS_PRINT_INFO)
00881                 av_log(c, AV_LOG_INFO, "output width is not a multiple of 32 -> no MMX2 scaler\n");
00882         }
00883         if (usesHFilter) c->canMMX2BeUsed=0;
00884     }
00885     else
00886         c->canMMX2BeUsed=0;
00887 
00888     c->chrXInc= (((int64_t)c->chrSrcW<<16) + (c->chrDstW>>1))/c->chrDstW;
00889     c->chrYInc= (((int64_t)c->chrSrcH<<16) + (c->chrDstH>>1))/c->chrDstH;
00890 
00891     // match pixel 0 of the src to pixel 0 of dst and match pixel n-2 of src to pixel n-2 of dst
00892     // but only for the FAST_BILINEAR mode otherwise do correct scaling
00893     // n-2 is the last chrominance sample available
00894     // this is not perfect, but no one should notice the difference, the more correct variant
00895     // would be like the vertical one, but that would require some special code for the
00896     // first and last pixel
00897     if (flags&SWS_FAST_BILINEAR) {
00898         if (c->canMMX2BeUsed) {
00899             c->lumXInc+= 20;
00900             c->chrXInc+= 20;
00901         }
00902         //we don't use the x86 asm scaler if MMX is available
00903         else if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
00904             c->lumXInc = ((int64_t)(srcW-2)<<16)/(dstW-2) - 20;
00905             c->chrXInc = ((int64_t)(c->chrSrcW-2)<<16)/(c->chrDstW-2) - 20;
00906         }
00907     }
00908 
00909     /* precalculate horizontal scaler filter coefficients */
00910     {
00911 #if HAVE_MMX2
00912 // can't downscale !!!
00913         if (c->canMMX2BeUsed && (flags & SWS_FAST_BILINEAR)) {
00914             c->lumMmx2FilterCodeSize = initMMX2HScaler(      dstW, c->lumXInc, NULL, NULL, NULL, 8);
00915             c->chrMmx2FilterCodeSize = initMMX2HScaler(c->chrDstW, c->chrXInc, NULL, NULL, NULL, 4);
00916 
00917 #ifdef MAP_ANONYMOUS
00918             c->lumMmx2FilterCode = mmap(NULL, c->lumMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
00919             c->chrMmx2FilterCode = mmap(NULL, c->chrMmx2FilterCodeSize, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
00920 #elif HAVE_VIRTUALALLOC
00921             c->lumMmx2FilterCode = VirtualAlloc(NULL, c->lumMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
00922             c->chrMmx2FilterCode = VirtualAlloc(NULL, c->chrMmx2FilterCodeSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
00923 #else
00924             c->lumMmx2FilterCode = av_malloc(c->lumMmx2FilterCodeSize);
00925             c->chrMmx2FilterCode = av_malloc(c->chrMmx2FilterCodeSize);
00926 #endif
00927 
00928             if (!c->lumMmx2FilterCode || !c->chrMmx2FilterCode)
00929                 return AVERROR(ENOMEM);
00930             FF_ALLOCZ_OR_GOTO(c, c->hLumFilter   , (dstW        /8+8)*sizeof(int16_t), fail);
00931             FF_ALLOCZ_OR_GOTO(c, c->hChrFilter   , (c->chrDstW  /4+8)*sizeof(int16_t), fail);
00932             FF_ALLOCZ_OR_GOTO(c, c->hLumFilterPos, (dstW      /2/8+8)*sizeof(int32_t), fail);
00933             FF_ALLOCZ_OR_GOTO(c, c->hChrFilterPos, (c->chrDstW/2/4+8)*sizeof(int32_t), fail);
00934 
00935             initMMX2HScaler(      dstW, c->lumXInc, c->lumMmx2FilterCode, c->hLumFilter, c->hLumFilterPos, 8);
00936             initMMX2HScaler(c->chrDstW, c->chrXInc, c->chrMmx2FilterCode, c->hChrFilter, c->hChrFilterPos, 4);
00937 
00938 #ifdef MAP_ANONYMOUS
00939             mprotect(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
00940             mprotect(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize, PROT_EXEC | PROT_READ);
00941 #endif
00942         } else
00943 #endif /* HAVE_MMX2 */
00944         {
00945             const int filterAlign=
00946                 (HAVE_MMX     && cpu_flags & AV_CPU_FLAG_MMX) ? 4 :
00947                 (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
00948                 1;
00949 
00950             if (initFilter(&c->hLumFilter, &c->hLumFilterPos, &c->hLumFilterSize, c->lumXInc,
00951                            srcW      ,       dstW, filterAlign, 1<<14,
00952                            (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags, cpu_flags,
00953                            srcFilter->lumH, dstFilter->lumH, c->param) < 0)
00954                 goto fail;
00955             if (initFilter(&c->hChrFilter, &c->hChrFilterPos, &c->hChrFilterSize, c->chrXInc,
00956                            c->chrSrcW, c->chrDstW, filterAlign, 1<<14,
00957                            (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags, cpu_flags,
00958                            srcFilter->chrH, dstFilter->chrH, c->param) < 0)
00959                 goto fail;
00960         }
00961     } // initialize horizontal stuff
00962 
00963     /* precalculate vertical scaler filter coefficients */
00964     {
00965         const int filterAlign=
00966             (HAVE_MMX     && cpu_flags & AV_CPU_FLAG_MMX) && (flags & SWS_ACCURATE_RND) ? 2 :
00967             (HAVE_ALTIVEC && cpu_flags & AV_CPU_FLAG_ALTIVEC) ? 8 :
00968             1;
00969 
00970         if (initFilter(&c->vLumFilter, &c->vLumFilterPos, &c->vLumFilterSize, c->lumYInc,
00971                        srcH      ,        dstH, filterAlign, (1<<12),
00972                        (flags&SWS_BICUBLIN) ? (flags|SWS_BICUBIC)  : flags, cpu_flags,
00973                        srcFilter->lumV, dstFilter->lumV, c->param) < 0)
00974             goto fail;
00975         if (initFilter(&c->vChrFilter, &c->vChrFilterPos, &c->vChrFilterSize, c->chrYInc,
00976                        c->chrSrcH, c->chrDstH, filterAlign, (1<<12),
00977                        (flags&SWS_BICUBLIN) ? (flags|SWS_BILINEAR) : flags, cpu_flags,
00978                        srcFilter->chrV, dstFilter->chrV, c->param) < 0)
00979             goto fail;
00980 
00981 #if HAVE_ALTIVEC
00982         FF_ALLOC_OR_GOTO(c, c->vYCoeffsBank, sizeof (vector signed short)*c->vLumFilterSize*c->dstH, fail);
00983         FF_ALLOC_OR_GOTO(c, c->vCCoeffsBank, sizeof (vector signed short)*c->vChrFilterSize*c->chrDstH, fail);
00984 
00985         for (i=0;i<c->vLumFilterSize*c->dstH;i++) {
00986             int j;
00987             short *p = (short *)&c->vYCoeffsBank[i];
00988             for (j=0;j<8;j++)
00989                 p[j] = c->vLumFilter[i];
00990         }
00991 
00992         for (i=0;i<c->vChrFilterSize*c->chrDstH;i++) {
00993             int j;
00994             short *p = (short *)&c->vCCoeffsBank[i];
00995             for (j=0;j<8;j++)
00996                 p[j] = c->vChrFilter[i];
00997         }
00998 #endif
00999     }
01000 
01001     // calculate buffer sizes so that they won't run out while handling these damn slices
01002     c->vLumBufSize= c->vLumFilterSize;
01003     c->vChrBufSize= c->vChrFilterSize;
01004     for (i=0; i<dstH; i++) {
01005         int chrI = (int64_t) i * c->chrDstH / dstH;
01006         int nextSlice= FFMAX(c->vLumFilterPos[i   ] + c->vLumFilterSize - 1,
01007                            ((c->vChrFilterPos[chrI] + c->vChrFilterSize - 1)<<c->chrSrcVSubSample));
01008 
01009         nextSlice>>= c->chrSrcVSubSample;
01010         nextSlice<<= c->chrSrcVSubSample;
01011         if (c->vLumFilterPos[i   ] + c->vLumBufSize < nextSlice)
01012             c->vLumBufSize= nextSlice - c->vLumFilterPos[i];
01013         if (c->vChrFilterPos[chrI] + c->vChrBufSize < (nextSlice>>c->chrSrcVSubSample))
01014             c->vChrBufSize= (nextSlice>>c->chrSrcVSubSample) - c->vChrFilterPos[chrI];
01015     }
01016 
01017     // allocate pixbufs (we use dynamic allocation because otherwise we would need to
01018     // allocate several megabytes to handle all possible cases)
01019     FF_ALLOC_OR_GOTO(c, c->lumPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
01020     FF_ALLOC_OR_GOTO(c, c->chrUPixBuf, c->vChrBufSize*2*sizeof(int16_t*), fail);
01021     FF_ALLOC_OR_GOTO(c, c->chrVPixBuf, c->vChrBufSize*2*sizeof(int16_t*), fail);
01022     if (CONFIG_SWSCALE_ALPHA && isALPHA(c->srcFormat) && isALPHA(c->dstFormat))
01023         FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf, c->vLumBufSize*2*sizeof(int16_t*), fail);
01024     //Note we need at least one pixel more at the end because of the MMX code (just in case someone wanna replace the 4000/8000)
01025     /* align at 16 bytes for AltiVec */
01026     for (i=0; i<c->vLumBufSize; i++) {
01027         FF_ALLOCZ_OR_GOTO(c, c->lumPixBuf[i+c->vLumBufSize], dst_stride+1, fail);
01028         c->lumPixBuf[i] = c->lumPixBuf[i+c->vLumBufSize];
01029     }
01030     c->uv_off = dst_stride_px;
01031     c->uv_offx2 = dst_stride;
01032     for (i=0; i<c->vChrBufSize; i++) {
01033         FF_ALLOC_OR_GOTO(c, c->chrUPixBuf[i+c->vChrBufSize], dst_stride*2+1, fail);
01034         c->chrUPixBuf[i] = c->chrUPixBuf[i+c->vChrBufSize];
01035         c->chrVPixBuf[i] = c->chrVPixBuf[i+c->vChrBufSize] = c->chrUPixBuf[i] + dst_stride_px;
01036     }
01037     if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf)
01038         for (i=0; i<c->vLumBufSize; i++) {
01039             FF_ALLOCZ_OR_GOTO(c, c->alpPixBuf[i+c->vLumBufSize], dst_stride+1, fail);
01040             c->alpPixBuf[i] = c->alpPixBuf[i+c->vLumBufSize];
01041         }
01042 
01043     //try to avoid drawing green stuff between the right end and the stride end
01044     for (i=0; i<c->vChrBufSize; i++)
01045         memset(c->chrUPixBuf[i], 64, dst_stride*2+1);
01046 
01047     assert(c->chrDstH <= dstH);
01048 
01049     if (flags&SWS_PRINT_INFO) {
01050         if      (flags&SWS_FAST_BILINEAR) av_log(c, AV_LOG_INFO, "FAST_BILINEAR scaler, ");
01051         else if (flags&SWS_BILINEAR)      av_log(c, AV_LOG_INFO, "BILINEAR scaler, ");
01052         else if (flags&SWS_BICUBIC)       av_log(c, AV_LOG_INFO, "BICUBIC scaler, ");
01053         else if (flags&SWS_X)             av_log(c, AV_LOG_INFO, "Experimental scaler, ");
01054         else if (flags&SWS_POINT)         av_log(c, AV_LOG_INFO, "Nearest Neighbor / POINT scaler, ");
01055         else if (flags&SWS_AREA)          av_log(c, AV_LOG_INFO, "Area Averaging scaler, ");
01056         else if (flags&SWS_BICUBLIN)      av_log(c, AV_LOG_INFO, "luma BICUBIC / chroma BILINEAR scaler, ");
01057         else if (flags&SWS_GAUSS)         av_log(c, AV_LOG_INFO, "Gaussian scaler, ");
01058         else if (flags&SWS_SINC)          av_log(c, AV_LOG_INFO, "Sinc scaler, ");
01059         else if (flags&SWS_LANCZOS)       av_log(c, AV_LOG_INFO, "Lanczos scaler, ");
01060         else if (flags&SWS_SPLINE)        av_log(c, AV_LOG_INFO, "Bicubic spline scaler, ");
01061         else                              av_log(c, AV_LOG_INFO, "ehh flags invalid?! ");
01062 
01063         av_log(c, AV_LOG_INFO, "from %s to %s%s ",
01064                sws_format_name(srcFormat),
01065 #ifdef DITHER1XBPP
01066                dstFormat == PIX_FMT_BGR555 || dstFormat == PIX_FMT_BGR565 ||
01067                dstFormat == PIX_FMT_RGB444BE || dstFormat == PIX_FMT_RGB444LE ||
01068                dstFormat == PIX_FMT_BGR444BE || dstFormat == PIX_FMT_BGR444LE ? "dithered " : "",
01069 #else
01070                "",
01071 #endif
01072                sws_format_name(dstFormat));
01073 
01074         if      (HAVE_MMX2     && cpu_flags & AV_CPU_FLAG_MMX2)    av_log(c, AV_LOG_INFO, "using MMX2\n");
01075         else if (HAVE_AMD3DNOW && cpu_flags & AV_CPU_FLAG_3DNOW)   av_log(c, AV_LOG_INFO, "using 3DNOW\n");
01076         else if (HAVE_MMX      && cpu_flags & AV_CPU_FLAG_MMX)     av_log(c, AV_LOG_INFO, "using MMX\n");
01077         else if (HAVE_ALTIVEC  && cpu_flags & AV_CPU_FLAG_ALTIVEC) av_log(c, AV_LOG_INFO, "using AltiVec\n");
01078         else                                   av_log(c, AV_LOG_INFO, "using C\n");
01079 
01080         if (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) {
01081             if (c->canMMX2BeUsed && (flags&SWS_FAST_BILINEAR))
01082                 av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR MMX2 scaler for horizontal scaling\n");
01083             else {
01084                 if (c->hLumFilterSize==4)
01085                     av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal luminance scaling\n");
01086                 else if (c->hLumFilterSize==8)
01087                     av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal luminance scaling\n");
01088                 else
01089                     av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal luminance scaling\n");
01090 
01091                 if (c->hChrFilterSize==4)
01092                     av_log(c, AV_LOG_VERBOSE, "using 4-tap MMX scaler for horizontal chrominance scaling\n");
01093                 else if (c->hChrFilterSize==8)
01094                     av_log(c, AV_LOG_VERBOSE, "using 8-tap MMX scaler for horizontal chrominance scaling\n");
01095                 else
01096                     av_log(c, AV_LOG_VERBOSE, "using n-tap MMX scaler for horizontal chrominance scaling\n");
01097             }
01098         } else {
01099 #if HAVE_MMX
01100             av_log(c, AV_LOG_VERBOSE, "using x86 asm scaler for horizontal scaling\n");
01101 #else
01102             if (flags & SWS_FAST_BILINEAR)
01103                 av_log(c, AV_LOG_VERBOSE, "using FAST_BILINEAR C scaler for horizontal scaling\n");
01104             else
01105                 av_log(c, AV_LOG_VERBOSE, "using C scaler for horizontal scaling\n");
01106 #endif
01107         }
01108         if (isPlanarYUV(dstFormat)) {
01109             if (c->vLumFilterSize==1)
01110                 av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical scaling (YV12 like)\n",
01111                        (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
01112             else
01113                 av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (YV12 like)\n",
01114                        (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
01115         } else {
01116             if (c->vLumFilterSize==1 && c->vChrFilterSize==2)
01117                 av_log(c, AV_LOG_VERBOSE, "using 1-tap %s \"scaler\" for vertical luminance scaling (BGR)\n"
01118                        "      2-tap scaler for vertical chrominance scaling (BGR)\n",
01119                        (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
01120             else if (c->vLumFilterSize==2 && c->vChrFilterSize==2)
01121                 av_log(c, AV_LOG_VERBOSE, "using 2-tap linear %s scaler for vertical scaling (BGR)\n",
01122                        (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
01123             else
01124                 av_log(c, AV_LOG_VERBOSE, "using n-tap %s scaler for vertical scaling (BGR)\n",
01125                        (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
01126         }
01127 
01128         if (dstFormat==PIX_FMT_BGR24)
01129             av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR24 converter\n",
01130                    (HAVE_MMX2 && cpu_flags & AV_CPU_FLAG_MMX2) ? "MMX2" :
01131                    ((HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C"));
01132         else if (dstFormat==PIX_FMT_RGB32)
01133             av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR32 converter\n",
01134                    (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
01135         else if (dstFormat==PIX_FMT_BGR565)
01136             av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR16 converter\n",
01137                    (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
01138         else if (dstFormat==PIX_FMT_BGR555)
01139             av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR15 converter\n",
01140                    (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
01141         else if (dstFormat == PIX_FMT_RGB444BE || dstFormat == PIX_FMT_RGB444LE ||
01142                  dstFormat == PIX_FMT_BGR444BE || dstFormat == PIX_FMT_BGR444LE)
01143             av_log(c, AV_LOG_VERBOSE, "using %s YV12->BGR12 converter\n",
01144                    (HAVE_MMX && cpu_flags & AV_CPU_FLAG_MMX) ? "MMX" : "C");
01145 
01146         av_log(c, AV_LOG_VERBOSE, "%dx%d -> %dx%d\n", srcW, srcH, dstW, dstH);
01147         av_log(c, AV_LOG_DEBUG, "lum srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
01148                c->srcW, c->srcH, c->dstW, c->dstH, c->lumXInc, c->lumYInc);
01149         av_log(c, AV_LOG_DEBUG, "chr srcW=%d srcH=%d dstW=%d dstH=%d xInc=%d yInc=%d\n",
01150                c->chrSrcW, c->chrSrcH, c->chrDstW, c->chrDstH, c->chrXInc, c->chrYInc);
01151     }
01152 
01153     c->swScale= ff_getSwsFunc(c);
01154     return 0;
01155 fail: //FIXME replace things by appropriate error codes
01156     return -1;
01157 }
01158 
01159 #if FF_API_SWS_GETCONTEXT
01160 SwsContext *sws_getContext(int srcW, int srcH, enum PixelFormat srcFormat,
01161                            int dstW, int dstH, enum PixelFormat dstFormat, int flags,
01162                            SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
01163 {
01164     SwsContext *c;
01165 
01166     if(!(c=sws_alloc_context()))
01167         return NULL;
01168 
01169     c->flags= flags;
01170     c->srcW= srcW;
01171     c->srcH= srcH;
01172     c->dstW= dstW;
01173     c->dstH= dstH;
01174     c->srcRange = handle_jpeg(&srcFormat);
01175     c->dstRange = handle_jpeg(&dstFormat);
01176     c->srcFormat= srcFormat;
01177     c->dstFormat= dstFormat;
01178 
01179     if (param) {
01180         c->param[0] = param[0];
01181         c->param[1] = param[1];
01182     }
01183     sws_setColorspaceDetails(c, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], c->srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, c->dstRange, 0, 1<<16, 1<<16);
01184 
01185     if(sws_init_context(c, srcFilter, dstFilter) < 0){
01186         sws_freeContext(c);
01187         return NULL;
01188     }
01189 
01190     return c;
01191 }
01192 #endif
01193 
01194 SwsFilter *sws_getDefaultFilter(float lumaGBlur, float chromaGBlur,
01195                                 float lumaSharpen, float chromaSharpen,
01196                                 float chromaHShift, float chromaVShift,
01197                                 int verbose)
01198 {
01199     SwsFilter *filter= av_malloc(sizeof(SwsFilter));
01200     if (!filter)
01201         return NULL;
01202 
01203     if (lumaGBlur!=0.0) {
01204         filter->lumH= sws_getGaussianVec(lumaGBlur, 3.0);
01205         filter->lumV= sws_getGaussianVec(lumaGBlur, 3.0);
01206     } else {
01207         filter->lumH= sws_getIdentityVec();
01208         filter->lumV= sws_getIdentityVec();
01209     }
01210 
01211     if (chromaGBlur!=0.0) {
01212         filter->chrH= sws_getGaussianVec(chromaGBlur, 3.0);
01213         filter->chrV= sws_getGaussianVec(chromaGBlur, 3.0);
01214     } else {
01215         filter->chrH= sws_getIdentityVec();
01216         filter->chrV= sws_getIdentityVec();
01217     }
01218 
01219     if (chromaSharpen!=0.0) {
01220         SwsVector *id= sws_getIdentityVec();
01221         sws_scaleVec(filter->chrH, -chromaSharpen);
01222         sws_scaleVec(filter->chrV, -chromaSharpen);
01223         sws_addVec(filter->chrH, id);
01224         sws_addVec(filter->chrV, id);
01225         sws_freeVec(id);
01226     }
01227 
01228     if (lumaSharpen!=0.0) {
01229         SwsVector *id= sws_getIdentityVec();
01230         sws_scaleVec(filter->lumH, -lumaSharpen);
01231         sws_scaleVec(filter->lumV, -lumaSharpen);
01232         sws_addVec(filter->lumH, id);
01233         sws_addVec(filter->lumV, id);
01234         sws_freeVec(id);
01235     }
01236 
01237     if (chromaHShift != 0.0)
01238         sws_shiftVec(filter->chrH, (int)(chromaHShift+0.5));
01239 
01240     if (chromaVShift != 0.0)
01241         sws_shiftVec(filter->chrV, (int)(chromaVShift+0.5));
01242 
01243     sws_normalizeVec(filter->chrH, 1.0);
01244     sws_normalizeVec(filter->chrV, 1.0);
01245     sws_normalizeVec(filter->lumH, 1.0);
01246     sws_normalizeVec(filter->lumV, 1.0);
01247 
01248     if (verbose) sws_printVec2(filter->chrH, NULL, AV_LOG_DEBUG);
01249     if (verbose) sws_printVec2(filter->lumH, NULL, AV_LOG_DEBUG);
01250 
01251     return filter;
01252 }
01253 
01254 SwsVector *sws_allocVec(int length)
01255 {
01256     SwsVector *vec = av_malloc(sizeof(SwsVector));
01257     if (!vec)
01258         return NULL;
01259     vec->length = length;
01260     vec->coeff  = av_malloc(sizeof(double) * length);
01261     if (!vec->coeff)
01262         av_freep(&vec);
01263     return vec;
01264 }
01265 
01266 SwsVector *sws_getGaussianVec(double variance, double quality)
01267 {
01268     const int length= (int)(variance*quality + 0.5) | 1;
01269     int i;
01270     double middle= (length-1)*0.5;
01271     SwsVector *vec= sws_allocVec(length);
01272 
01273     if (!vec)
01274         return NULL;
01275 
01276     for (i=0; i<length; i++) {
01277         double dist= i-middle;
01278         vec->coeff[i]= exp(-dist*dist/(2*variance*variance)) / sqrt(2*variance*M_PI);
01279     }
01280 
01281     sws_normalizeVec(vec, 1.0);
01282 
01283     return vec;
01284 }
01285 
01286 SwsVector *sws_getConstVec(double c, int length)
01287 {
01288     int i;
01289     SwsVector *vec= sws_allocVec(length);
01290 
01291     if (!vec)
01292         return NULL;
01293 
01294     for (i=0; i<length; i++)
01295         vec->coeff[i]= c;
01296 
01297     return vec;
01298 }
01299 
01300 SwsVector *sws_getIdentityVec(void)
01301 {
01302     return sws_getConstVec(1.0, 1);
01303 }
01304 
01305 static double sws_dcVec(SwsVector *a)
01306 {
01307     int i;
01308     double sum=0;
01309 
01310     for (i=0; i<a->length; i++)
01311         sum+= a->coeff[i];
01312 
01313     return sum;
01314 }
01315 
01316 void sws_scaleVec(SwsVector *a, double scalar)
01317 {
01318     int i;
01319 
01320     for (i=0; i<a->length; i++)
01321         a->coeff[i]*= scalar;
01322 }
01323 
01324 void sws_normalizeVec(SwsVector *a, double height)
01325 {
01326     sws_scaleVec(a, height/sws_dcVec(a));
01327 }
01328 
01329 static SwsVector *sws_getConvVec(SwsVector *a, SwsVector *b)
01330 {
01331     int length= a->length + b->length - 1;
01332     int i, j;
01333     SwsVector *vec= sws_getConstVec(0.0, length);
01334 
01335     if (!vec)
01336         return NULL;
01337 
01338     for (i=0; i<a->length; i++) {
01339         for (j=0; j<b->length; j++) {
01340             vec->coeff[i+j]+= a->coeff[i]*b->coeff[j];
01341         }
01342     }
01343 
01344     return vec;
01345 }
01346 
01347 static SwsVector *sws_sumVec(SwsVector *a, SwsVector *b)
01348 {
01349     int length= FFMAX(a->length, b->length);
01350     int i;
01351     SwsVector *vec= sws_getConstVec(0.0, length);
01352 
01353     if (!vec)
01354         return NULL;
01355 
01356     for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
01357     for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]+= b->coeff[i];
01358 
01359     return vec;
01360 }
01361 
01362 static SwsVector *sws_diffVec(SwsVector *a, SwsVector *b)
01363 {
01364     int length= FFMAX(a->length, b->length);
01365     int i;
01366     SwsVector *vec= sws_getConstVec(0.0, length);
01367 
01368     if (!vec)
01369         return NULL;
01370 
01371     for (i=0; i<a->length; i++) vec->coeff[i + (length-1)/2 - (a->length-1)/2]+= a->coeff[i];
01372     for (i=0; i<b->length; i++) vec->coeff[i + (length-1)/2 - (b->length-1)/2]-= b->coeff[i];
01373 
01374     return vec;
01375 }
01376 
01377 /* shift left / or right if "shift" is negative */
01378 static SwsVector *sws_getShiftedVec(SwsVector *a, int shift)
01379 {
01380     int length= a->length + FFABS(shift)*2;
01381     int i;
01382     SwsVector *vec= sws_getConstVec(0.0, length);
01383 
01384     if (!vec)
01385         return NULL;
01386 
01387     for (i=0; i<a->length; i++) {
01388         vec->coeff[i + (length-1)/2 - (a->length-1)/2 - shift]= a->coeff[i];
01389     }
01390 
01391     return vec;
01392 }
01393 
01394 void sws_shiftVec(SwsVector *a, int shift)
01395 {
01396     SwsVector *shifted= sws_getShiftedVec(a, shift);
01397     av_free(a->coeff);
01398     a->coeff= shifted->coeff;
01399     a->length= shifted->length;
01400     av_free(shifted);
01401 }
01402 
01403 void sws_addVec(SwsVector *a, SwsVector *b)
01404 {
01405     SwsVector *sum= sws_sumVec(a, b);
01406     av_free(a->coeff);
01407     a->coeff= sum->coeff;
01408     a->length= sum->length;
01409     av_free(sum);
01410 }
01411 
01412 void sws_subVec(SwsVector *a, SwsVector *b)
01413 {
01414     SwsVector *diff= sws_diffVec(a, b);
01415     av_free(a->coeff);
01416     a->coeff= diff->coeff;
01417     a->length= diff->length;
01418     av_free(diff);
01419 }
01420 
01421 void sws_convVec(SwsVector *a, SwsVector *b)
01422 {
01423     SwsVector *conv= sws_getConvVec(a, b);
01424     av_free(a->coeff);
01425     a->coeff= conv->coeff;
01426     a->length= conv->length;
01427     av_free(conv);
01428 }
01429 
01430 SwsVector *sws_cloneVec(SwsVector *a)
01431 {
01432     int i;
01433     SwsVector *vec= sws_allocVec(a->length);
01434 
01435     if (!vec)
01436         return NULL;
01437 
01438     for (i=0; i<a->length; i++) vec->coeff[i]= a->coeff[i];
01439 
01440     return vec;
01441 }
01442 
01443 void sws_printVec2(SwsVector *a, AVClass *log_ctx, int log_level)
01444 {
01445     int i;
01446     double max=0;
01447     double min=0;
01448     double range;
01449 
01450     for (i=0; i<a->length; i++)
01451         if (a->coeff[i]>max) max= a->coeff[i];
01452 
01453     for (i=0; i<a->length; i++)
01454         if (a->coeff[i]<min) min= a->coeff[i];
01455 
01456     range= max - min;
01457 
01458     for (i=0; i<a->length; i++) {
01459         int x= (int)((a->coeff[i]-min)*60.0/range +0.5);
01460         av_log(log_ctx, log_level, "%1.3f ", a->coeff[i]);
01461         for (;x>0; x--) av_log(log_ctx, log_level, " ");
01462         av_log(log_ctx, log_level, "|\n");
01463     }
01464 }
01465 
01466 void sws_freeVec(SwsVector *a)
01467 {
01468     if (!a) return;
01469     av_freep(&a->coeff);
01470     a->length=0;
01471     av_free(a);
01472 }
01473 
01474 void sws_freeFilter(SwsFilter *filter)
01475 {
01476     if (!filter) return;
01477 
01478     if (filter->lumH) sws_freeVec(filter->lumH);
01479     if (filter->lumV) sws_freeVec(filter->lumV);
01480     if (filter->chrH) sws_freeVec(filter->chrH);
01481     if (filter->chrV) sws_freeVec(filter->chrV);
01482     av_free(filter);
01483 }
01484 
01485 void sws_freeContext(SwsContext *c)
01486 {
01487     int i;
01488     if (!c) return;
01489 
01490     if (c->lumPixBuf) {
01491         for (i=0; i<c->vLumBufSize; i++)
01492             av_freep(&c->lumPixBuf[i]);
01493         av_freep(&c->lumPixBuf);
01494     }
01495 
01496     if (c->chrUPixBuf) {
01497         for (i=0; i<c->vChrBufSize; i++)
01498             av_freep(&c->chrUPixBuf[i]);
01499         av_freep(&c->chrUPixBuf);
01500         av_freep(&c->chrVPixBuf);
01501     }
01502 
01503     if (CONFIG_SWSCALE_ALPHA && c->alpPixBuf) {
01504         for (i=0; i<c->vLumBufSize; i++)
01505             av_freep(&c->alpPixBuf[i]);
01506         av_freep(&c->alpPixBuf);
01507     }
01508 
01509     av_freep(&c->vLumFilter);
01510     av_freep(&c->vChrFilter);
01511     av_freep(&c->hLumFilter);
01512     av_freep(&c->hChrFilter);
01513 #if HAVE_ALTIVEC
01514     av_freep(&c->vYCoeffsBank);
01515     av_freep(&c->vCCoeffsBank);
01516 #endif
01517 
01518     av_freep(&c->vLumFilterPos);
01519     av_freep(&c->vChrFilterPos);
01520     av_freep(&c->hLumFilterPos);
01521     av_freep(&c->hChrFilterPos);
01522 
01523 #if HAVE_MMX
01524 #ifdef MAP_ANONYMOUS
01525     if (c->lumMmx2FilterCode) munmap(c->lumMmx2FilterCode, c->lumMmx2FilterCodeSize);
01526     if (c->chrMmx2FilterCode) munmap(c->chrMmx2FilterCode, c->chrMmx2FilterCodeSize);
01527 #elif HAVE_VIRTUALALLOC
01528     if (c->lumMmx2FilterCode) VirtualFree(c->lumMmx2FilterCode, 0, MEM_RELEASE);
01529     if (c->chrMmx2FilterCode) VirtualFree(c->chrMmx2FilterCode, 0, MEM_RELEASE);
01530 #else
01531     av_free(c->lumMmx2FilterCode);
01532     av_free(c->chrMmx2FilterCode);
01533 #endif
01534     c->lumMmx2FilterCode=NULL;
01535     c->chrMmx2FilterCode=NULL;
01536 #endif /* HAVE_MMX */
01537 
01538     av_freep(&c->yuvTable);
01539     av_free(c->formatConvBuffer);
01540 
01541     av_free(c);
01542 }
01543 
01544 struct SwsContext *sws_getCachedContext(struct SwsContext *context,
01545                                         int srcW, int srcH, enum PixelFormat srcFormat,
01546                                         int dstW, int dstH, enum PixelFormat dstFormat, int flags,
01547                                         SwsFilter *srcFilter, SwsFilter *dstFilter, const double *param)
01548 {
01549     static const double default_param[2] = {SWS_PARAM_DEFAULT, SWS_PARAM_DEFAULT};
01550 
01551     if (!param)
01552         param = default_param;
01553 
01554     if (context &&
01555         (context->srcW      != srcW      ||
01556          context->srcH      != srcH      ||
01557          context->srcFormat != srcFormat ||
01558          context->dstW      != dstW      ||
01559          context->dstH      != dstH      ||
01560          context->dstFormat != dstFormat ||
01561          context->flags     != flags     ||
01562          context->param[0]  != param[0]  ||
01563          context->param[1]  != param[1])) {
01564         sws_freeContext(context);
01565         context = NULL;
01566     }
01567 
01568     if (!context) {
01569         if (!(context = sws_alloc_context()))
01570             return NULL;
01571         context->srcW      = srcW;
01572         context->srcH      = srcH;
01573         context->srcRange  = handle_jpeg(&srcFormat);
01574         context->srcFormat = srcFormat;
01575         context->dstW      = dstW;
01576         context->dstH      = dstH;
01577         context->dstRange  = handle_jpeg(&dstFormat);
01578         context->dstFormat = dstFormat;
01579         context->flags     = flags;
01580         context->param[0]  = param[0];
01581         context->param[1]  = param[1];
01582         sws_setColorspaceDetails(context, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT], context->srcRange, ff_yuv2rgb_coeffs[SWS_CS_DEFAULT] /* FIXME*/, context->dstRange, 0, 1<<16, 1<<16);
01583         if (sws_init_context(context, srcFilter, dstFilter) < 0) {
01584             sws_freeContext(context);
01585             return NULL;
01586         }
01587     }
01588     return context;
01589 }
01590